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Abstract. We derive a model for one-dimensional charge-transport through two-terminal semi-
conducture heterostructure nano-devices comprising stacked layers of quantum dots with transverse
Bravais lattice layout. All dots in a layer are assumed to be identical. The stacked layers are
assumed to be perfectly vertically-aligned so that the entire device has a well-defined transverse
unit-cell. We allow for an arbitrary sequence of quantum dot layers and intervening spacer and
wetting layers between two heavily-doped, ohmic contacts. The model naturally accounts for long-
range, inter-dot correlations. We rigorously prove that the device behaves as a diffraction grating
which distributes incident wavefunction-phases into specific patterns of transmitted phases. This
establishes several mathematical properties that allow efficient decomposition of the problem and
permit feasible strategies for computational implementation. We motivate the study of this family
of devices citing experimental developments.
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1. Introduction. Advances in fabrication technology have shown that layers
of quantum dots can be grown in regular layouts with only small variations in dot
geometry over the extent of a layer [36, 23, 28]. Diverse possibilities exist for the size,
shape [38, 15, 20, 39, 21, 24], dot-density [30] and material system - III-V (principally
InAs/GaAs), Group IV [11], II-VI [18], and IV-VI [33] - with quasi-periodic layouts
[29]. Also, vertically-stacked layers tend to align with long-range, three-dimensional
order [8] resulting in lattices with simple cube [19, 33] and FCC unit-cells [33]. This
is reminiscent of the atomic arrangement in intrinsic semiconductor material crystals
which is the foundation for many of their interesting properties. Because quantum
dots are artificial atoms, analogy suggests that stacked quantum dot layers (SQDL)
may also possess interesting electronic and optical properties that could give rise to
a promising family of devices and applications.

Interesting open-system, electronic devices like resonant tunneling diodes have
been demonstrated using SQDL [31]. Since the experimental demonstration of quantum-
mechanical tunneling by Chang et. al. [9], many semiconductor nano-heterostructure
electronic devices have been proposed which exhibit non-monotonic current-voltage
(I-V) characteristics. Proof-of-concept circuits based on idealizations of negative dif-
ferential resistance in the I-V characteristics of conventional resonant tunneling diodes
[35], built epitaxially with alternating layers of lattice-matched material films, indicate
the potential of heterostructure devices in realizing new and existing applications with
superior speed and power performance [25]. The use of lattice-mismatched materials
in epitaxial growth leads to pseudomorphic-strain-induced quantum dot formation
[12]. Their self-assembly with long-range order invites questions on the character-
istics of charge transport obtainable from this class of materials, and motivates the
advancement of models beyond existing ones.

The large space of parameters - size, shape, density, material-system, layout,
stacking - that affect device characteristics makes modeling and simulation indis-

†Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109, USA ({rmanoj, mazum} @eecs.umich.edu)

1



pensable aids to experiment. If process-technology matures to permit the growth of
nano-voids [22] and antidots [14] in regular geometries, then quantum-dot composition
would add an extra dimension to the parameter-space. Three-dimensional modeling
is necessary for these device-geometries and naive models rapidly grow to exhaust
resources provided by powerful computers even at modest problem-sizes. Atomistic
modeling is a possibility but the complexity and resource pressure are in general high
and are expected to be compounded by the inclusion of long-range inter-dot correla-
tions that are characteristic of these systems.

The envelope-function approach [2, 3] has had reasonable success in predict-
ing charge-transport characteristics of simple heterostructure devices. We therefore
propose an envelope-function-based model for steady-state, one-dimensional charge-
transport through SQDL along the growth-direction. In doing so, we establish many
mathematical properties of SQDL systems that allow highly parallel implementa-
tion with low pressure on computational resources. A semi-empirical extension of
this model could serve as a bridge between expensive, physically-accurate atomistic
models and simple, phenomenological, behavioral models. This model will also al-
low estimation of the lower time- and resource-bounds for simulating SQDL systems.
Lastly, the beauty of the fabricated structures and the challenges in mathematical
modeling and computational complexity make the development of such a model an
interesting problem.

Most theoretical and experimental investigations (e.g. [6, and references therein])
study electronic structure and optical response of isolated dots - relatively few ad-
dress the problem of charge-transport especially through an open, extended system
of quantum dots. Ko and Inkson [17] propose the use of the scattering-matrix, or S-
matrix, structure for resonant tunneling through multilayer systems. Xu [37] applies
the S-matrix approach to study transport through 1D periodic arrays of antidots in
a 2D electron-gas (2D) in a manner similar to this work. Mizuta et. al. [27] study
transport through lithographically-etched, free-standing, isolated quantum dots using
the S-matrix method.

Section 2 describes the problem, notation and conventions. Section 3 presents
the general formalism and the dependence of the current on the carrier wavefunction
when the device is driven by an externally-applied voltage. Sections 4 and 5 develop
the method for wavefunction calculation, derive various special properties and sim-
plifications arising from the lateral translational symmetry, and prove that incident
wavefunction phases exhibit specific patterns of diffraction when eventually trans-
mitted. Section 6 extends the general formalism of Section 3 with these results and
completes the model with a formula for total current per lateral-unit-cell. Section 7
concludes with a summary, critique and mention of future work. For brevity, each
of these sections includes only the important results - various appendices furnish the
details.

2. Conventions, terminology, and notation . In this section, we standardize
most of the notation, terminology, and conventions occurring throughout this work.
A few other definitions are made in relevant contexts when their scope is local.

Except for Airy functions, the prime symbol (′) does not denote differentiation.

2.1. Device description . The device is grown along the z−axis. Fig. 2.1
depicts the structure of devices considered in this work. Two ohmic contacts enclose
an arbitrary sequence of regions that are either spacers or QDL. Spacers are uniform
regions of a single, isotropic material. The QDL are regions where the effective-mass
and/or potential energy profile show variation. This includes the matrix of high
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bandgap material surrounding the islands of lower bandgap material. Within each
QDL all quantum dots are identical and grow in a perfect, two-dimensional (x − y)
Bravais lattice layout - therefore effective-mass and potential energy lateral variation
is periodic. There can be more than one dot per unit-cell. All QDL are vertically
aligned - the positions and orientations of their unit-cells are exactly-matched so
that the entire has a well-defined lateral Bravais lattice structure and unit-cell. The
QDL may or may not have wetting layers depending on their growth mode. We
assume uniform strain and potential energy distribution in the wetting layers and
relegate any (periodic) non-uniformities to the QDL. Therefore, wetting layers are
also grouped with spacers. Voltage bias is applied along the growth (z) direction and
does not distort the structure of the device. We assume the device to be of infinite
lateral extent, i.e., we ignore fringe effects from actual finite extents. We use N‖ to
symbolically denote the (infinite) number of lateral unit-cells in the device.

Figure 2.1. Schematic depiction of the stacked quantum dot layer device

The (relative) effective-mass and potential energy spatial distributions, along with
doping and temperature information at the contacts, completely specify the problem
in the mathematical sense. We use m (r) to denote relative effective-mass function in
the device, and µ (r) to denote its reciprocal - various superscripts and subscripts may
qualify the relevant region or interface. We use V (r) to denote the spatial variation
of the envelope of the true potential energy experienced by a carrier particle, and E
to denote is total energy.

2.2. Representation of functions and operators. We follow the bra-ket no-
tation of Dirac and consider functions and operators to be vectors and matrices,
respectively, in infinite-dimensional function-space - for a brief yet excellent introduc-
tion we refer the reader to Chapter 1 of [32]. This allows simple notation regardless
of dimension.

We use I to denote the identity operator or its matrix. We use 0 to denote the
zero matrix. The dimensions of these quantities are implicit in the context.

Real-space coordinates are denoted using lateral coordinates r‖
def= (x, y) ∈ R2 and

longitudinal coordinates z ∈ R. We deal mostly with functions of r‖ at various values
of z. Functions f (r) of the three spatial variables are represented as f

(
r‖, z

)
and the

2D restriction of f (r) to a fixed value of z is denoted f
(
r‖; z

)
. In general, a function

g of variables x with parametric dependence on variables c is denoted g (x; c).
We use 0‖ to denote (0, 0) ∈ R2.

3



Let F def=
{
f | f : R2 → C ,

˜
R2 |f |2 d2r‖ <∞

}
denote the set of complex-valued,

square-integrable, functions of r‖. Since
˜

R2

∣∣Ψ (r‖; z)∣∣2 d2r‖ must be bounded for
any wavefunction Ψ, all wavefunctions belong to this set. Each r‖ ∈ R2 corresponds
uniquely with the element (ket)

∣∣r‖〉 ∈ R ⊗ R, and each f ∈ F corresponds uniquely

with the map |f〉 : R ⊗ R → C such that
∣∣r‖〉 |f〉7→ f

(
r‖
)
. We use the term function

to refer to f or |f〉. The set F def= {|f〉 | f ∈ F} forms a Hilbert space over the field
of complex numbers C with basis

{∣∣r‖〉 | r‖ ∈ R2} ≡ R ⊗ R, that is orthonormal,
∀r‖1, r‖2 ∈ R2 :

〈
r‖1 | r‖2

〉
= δ

(
r‖1 − r‖2

)
(Dirac delta function), and complete,∑

r‖∈R2

∣∣r‖〉 〈r‖∣∣ = I. The inner-product for this space is ∀f1, f2 ∈ F : 〈f1 | f2〉
def=˜

R2 f
∗
1
(
r‖
)
f2
(
r‖
)
d2r‖. For any r‖ ∈ R2, f

(
r‖
)
≡
〈
r‖ | f

〉
is the coordinate of |f〉

along basis-element
∣∣r‖〉 in the real-space representation of |f〉.

In specific contexts, we extend this ket-notation to functions of 1 and 3 spatial
variables.

We use K to denote the set of 2D wavevectors k‖ ∈ R2. The family of all
normalized, 2D planewaves, K def=

{∣∣k‖〉 |k‖ ∈ K,
〈
r‖ | k‖

〉
= 1

2π e
ik‖•r‖

}
, r‖ ∈ R2,

also forms a complete, orthonormal basis (termed the reciprocal-space basis) for F , i.e.,
∀k‖1,k‖2 ∈ K,

〈
k‖1 | k‖2

〉
= δ

(
k‖1 − k‖2

)
and

∑
k‖∈K

∣∣k‖〉 〈k‖∣∣ = I. The reciprocal-
space representation of a function |f〉 in this basis is defined by coordinates f̂

(
k‖
) def=〈

k‖ | f
〉
and is related to its real-space representation through unitary, change-of-basis

transformations - the 2D Fourier transform and its inverse,

f̂
(
k‖
)

=
〈
k‖ | f

〉
= F‖

[
f
(
r‖
)] (

k‖
) def= 1

2π

¨
R2
e−ik‖•r‖f

(
r‖
)
d2r‖,(2.1)

f
(
r‖
)

=
〈
r‖ | f

〉
= F−1

‖

[
f̂
(
k‖
)] (

r‖
) def= 1

2π

¨
K
f̂
(
k‖
)
eik‖•r‖d2k‖.(2.2)

Vectors are denoted using bold-face, small, roman or greek letters. Operator
and matrices are represented using bold-face, capital, roman letters. We use M(z) to
denote the relative-effective-mass operator at a fixed value of z. It has diagonal-matrix
real-space representation,

〈
r‖
∣∣M (z)

∣∣r′‖〉 = m
(
r‖; z

)
δ
(
r‖ = r′‖

)
, and has the effect,〈

r‖
∣∣M |f〉 = m

(
r‖; z

)
f
(
r‖
)
. Its inverse is the reciprocal effective-mass operator〈

r‖
∣∣M−1 (z) |f〉 = µ

(
r‖; z

)
f
(
r‖
)
≡ 1

m(r‖;z)f
(
r‖
)
. It is useful in boundary-condition

contexts.
2.3. Periodic functions, Fourier series, and Brillouin zone . We use

R‖1, R‖2 ∈ R2 to denote the primitive vectors of the lateral unit-cell Ω‖. The unit-
cell area is denoted by

∣∣Ω‖∣∣ =
∣∣R‖1 ×R‖2

∣∣. Various lattice vectors are denoted by
R‖lm

def= lR‖1 + mR‖2, (l,m) ∈ Z2. The reciprocal-space primitive vectors G‖1 and
G‖2, such that R‖i •G‖j = (2π)2 δij (Kronecker delta function), define the extent of
the first Brillouin zone, f‖.

Periodic functions u
(
r‖ + R‖lm

)
≡ u

(
r‖
)
, ∀ (l,m) ∈ Z2, have Fourier series rep-

resentations of the form [16],

u
(
r‖
)

=
∑

(l,m)∈Z2

ûlme
iG‖lm•r‖ , ûlm = 1∣∣Ω‖∣∣

¨
Ω‖
e−iG‖lm•r‖u

(
r‖
)
d2r‖,(2.3)

where G‖lm
def= lG‖1+mG‖2, (l,m) ∈ Z2 denote various reciprocal-lattice vectors

and comprise the set G def=
{
G‖lm | (l,m) ∈ Z2}.
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The Fourier-series coefficients, ûlm, are collectively represented as a countably-
infinite-dimensional vector û. The Fourier-series coefficients of the product of two
periodic functions u

(
r‖
)
and v

(
r‖
)
are represented by (̂uv)lm, (l,m) ∈ Z2, and can

be calculated from convolution (̂uv)lm ≡ (û� v̂)lm
def=
∑

(l′,m′)∈Z2 ûl′m′ v̂(l−l′)(m−m′).
We use the dot-product notation to represent the sum of products of like components
of vectors, a•b =

∑
i aibi where i is an index variable that iterates across appropriate

limits and the summation is understood to represent integration when the domain of
i is continuous. If u

(
r‖
)
and v

(
r‖
)
are real-valued, then û−(lm) ≡ û∗lm, v̂−(lm) ≡ v̂∗lm

and therefore, (̂uv)00 ≡ (û� v̂)00 =
∑

(l,m)∈Z2 ûlmv̂−lm ≡ û • v̂∗ ≡ û∗ • v̂. This
equivalence is frequently used.

We use g‖ to denote vectors within the Brillouin zone, i.e.,

f‖
def=
{
g‖|g‖ = xG‖1 + yG‖2, x, y ∈ [−1

2
,
1
2
)
}
.

We use g‖lm
def= g‖+G‖lm, (l,m) ∈ Z2 to denote displacements of g‖ by reciprocal

lattice vectors, and G[g‖]
def=
{
g‖lm | (l,m) ∈ Z2} to denote the full family of such

displacements. Therefore G ≡ G[0‖].

2.4. Indices, basis-sets, and spanning-spaces. Real- and reciprocal-space
vectors, r‖ ∈ R2 and k‖ ∈ K, serve as indices to elements in basis-sets R⊗ R and K,
respectively, for F . We employ calligraphic symbols to denote (sub)sets of basis kets
for the corresponding (sub)sets of reciprocal-space vectors, K def=

{∣∣k‖〉 |k‖ ∈ K
}
,G def={∣∣G‖lm〉 |G‖lm ∈ G

}
and G[g‖]

def=
{∣∣g‖lm〉 |g‖lm ∈ G[g‖]

}
. We use the following

notation for (sub)spaces spanned by these basis-element sets, F = spanK, F[g‖]
def=

spanG[g‖].
Because the entire device possesses a well-defined lateral crystal structure, homo-

geneous regions like spacers and contacts can also be tiled into an identical Bravais
lattice comprised of homogeneous unit-cells. The following definitions are useful in
reconciling the behavior of the wavefunction across homogeneous regions and the
QDL.

Definition 2.1. For each k‖ ∈ K, the corresponding k‖-subspace of F is the
one-dimensional subspace Fk‖ spanned by planewave basis element

∣∣k‖〉. Therefore,
Fk‖

def= span
{∣∣k‖〉}.

Definition 2.2. For each g‖ ∈ f‖, the Brillouin-zone-vector subspace, or BZV-
subspace, is defined as F[g‖]

def= spanG[g‖] = span
{∣∣g‖lm〉 | (l,m) ∈ Z2}. It is the

subspace of F spanned by the countably-infinite set of kets comprising the equivalence-
class of g‖. Also, F[g‖] =

⊕
(l,m)∈Z2 Fg‖lm .

Definition 2.3. A natural order of the basis elements K is the partially-ordered
set K≤ obtained by imposing a partial order ≤ on K, defined such that

∀g‖,g′‖ ∈ f‖, ∀l, l′,m,m′ ∈ Z : g‖lm ≤ g′‖l′m′ if g‖ < g′‖

for some total order < imposed on f‖. Appendix A presents preliminary facts
based on the above definitions that will be frequently used throughout this work.
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3. General formalism . As shown in Fig. 3.1, we assume that the total current-
density through the device is the resultant from four constituent, undirectional sub-
current-densities,

J (Vbias) = J1→2,e (Vbias) + J2→1,e (Vbias) + J1→2,h (Vbias) + J2→1,h (Vbias) ,(3.1)

where the subscripts of the form INJ→ TRA, c refer to the transport of carrier type
c (e for electrons, h for holes) from the injecting contact to the transmitting contact,
and Vbias is the externally applied potential difference between the two contacts that
drives transport. We assume ballistic transport of the charge carriers.

Figure 3.1. Dominant contributions to net current-density for a two terminal device. The
shading in the contact regions schematically depicts high electron density.

We assume thermal equilibrium in the heavily-doped, ohmic contacts and that the
supplied carrier states incident on the device are planewaves. We assume that each
unidirectional sub-current is the weighted-accumulation of transmitted-probability-
currents from independent, elastic scattering of all incident states incident at the
corresponding injecting contact,

JINJ→TRA,c (Vbias) =(3.2)

2qc
¨

K

ˆ ∞
0

N (INJ)
c (k) f (INJ)

c (k;Vbias) 〈vINJ→TRA,c (k;Vbias)〉 dkzd2k‖,

where the z−axis is along INJ→TRA (=1 → 2 or 2 → 1), k = k‖ + kz ẑ is the
wavevector for the incident planewave, qc is the charge on a single carrier particle
(e for holes,−e for electrons), the factor of 2 accounts for both spins, and the gen-
eral expressions for the density-of-states and the Fermi-Dirac distribution function at
contact CON (=INJ or TRA) are [34],

N (CON)
c (k) = 1

(2π)3
, f (CON)

c (k) = 1

1 + exp
(
E(k)−E(CON)

F,c

kBT

)(3.3)

where E (k) is the dispersion relation, E(CON)
F,c is the Fermi energy which depends

on doping, and T is the temperature. The average z-velocity is obtained from the
expression for the spatial average of the transmitted, local probability-current,

jINJ→TRA,c

(
r‖;k, Vbias

) def=(3.4)
~

m(TRA)
c

Im
[
Ψ(TRA)∗
c

(
r‖, z;k, Vbias

) ∂
∂z

Ψ(TRA)
c

(
r‖, z;k, Vbias

)]∣∣∣∣
z≥L

6



〈vINJ→TRA,c (k;Vbias)〉 = 1
N‖Ω‖

¨
R2
jINJ→TRA,c

(
r‖;k, Vbias

)
d2r‖,(3.5)

where m(TRA)
c is the carrier-particle mass in the transmitting contact, L is the length

of the device, and Ψ(TRA)
c is its scattered wavefunction.

The wavefunction is calculated over the entire device by solving the time- inde-
pendent Schrödinger equation (TISE) with boundary conditions supplied by the form
of the wavefunctions at both contacts. We assume that the contacts are isotropic
and uniform with flat band-profiles despite the applied bias (even in self-consistent
co-solution with the Poisson equation, this assumption must be made deep enough
into the contact region), and that the dispersion relations are parabolic,

E(CON) (k) = ~2k2

2m(CON)
c

+ V (CON),(3.6)

where V (CON) is the potential energy at the relevant contact due to applied voltage.
Hence, for an incident state with wavevector k(INC) def= k(INC)

‖ + k(INC)
z ẑ, and energy

E = E(INJ) (k(INC);Vbias),

Ψ(INJ)
c (r;k(INC)) = Ψ(INC)

c (r;k(INC)) + Ψ(REFL)
c (r;k(INC)) ,(3.7)

Ψ(INC)
c (r;k(INC)) def= eik•r,(3.8)

Ψ(REFL)
c (r;k(INC)) def=

¨
K(INJ)(E)

ρ (k(INC),k) eik•r d2k,(3.9)

Ψ(TRA)
c (r;k(INC)) def=

¨
K(TRA)(E)

τ (k(INC),k) eik•r d2k,(3.10)

K(INJ) (E) def=
{
k ∈ R3 |E(INJ) (k) = E, k • ẑ ∈ R+}(3.11)

=
{
k‖ + k(INJ)

z

(
E,k‖

)
ẑ |k‖ ∈ K(INJ)

‖ (E)
}
,(3.12)

K(INJ)
‖ (E) def=

{
k‖ ∈ K |E(INJ)

(
k‖
)
< E

}
,(3.13)

k(CON)
z

(
E,k‖

)
=

∣∣∣∣∣
√

2m(CON)
c

~2 (E − V (CON))− k2
‖

∣∣∣∣∣ ,(3.14)

K(TRA) (E) def=
{
k ∈ R3 |E(TRA) (k) = E, k • ẑ ∈ R−

}
(3.15)

=
{
k‖ − k(TRA)

z

(
E,k‖

)
ẑ |k‖ ∈ K(TRA)

‖ (E)
}
,(3.16)

K(TRA)
‖ (E) def=

{
k‖ ∈ K |E(CON)

(
k‖
)
< E

}
.(3.17)

The incident wavefunction is partially reflected into a distribution of states prop-
agating along the −z direction, and the superposition of both is the steady-state
injecting-contact wavefunction. The contacts are assumed reflectionless and there-
fore, the injected wavefunction is elastically scattered into a distribution of states
propagating along the +z direction at the transmitting contact. We term ρ (k,k′) as
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the bidirectional reflectance distribution function (BRDF) and τ (k,k′) as the bidirec-
tional transmittance distribution function (BTDF), respectively, for probability am-
plitudes. In both cases, the distribution is over the iso-energy surface of wavevectors
corresponding to the incident energy.

The envelope-function approach simplifies calculations by substituting the ac-
tual spatial potential energy distribution with its envelope, and substituting the true
carrier mass with an effective-mass parameter that semi-empirically captures effects
from rapid atomic-scale variations of the true potential energy, i.e., mc 7→ m0cmc (r),
where m0c is the rest-mass of the carrier and mc (r) is its position-dependent, rela-
tive effective-mass. The solution to this new Schrödinger equation is the envelope of
the true wavefunction, henceforth referred to as the envelope function or simply, the
wavefunction. The expression for the transmitted-probability-current is the same as
in Eqn. (3.4) with the effective-mass and envelope function replacing the true carrier
mass and wavefunction.

By assuming the energy-reference to be the band minimum at the injecting con-
tact, we may follow a unified formalism for each of the four unidirectional subcurrents.

V (INJ) ≡ 0, V (TRA) = ±Vbias(3.18)

We therefore drop symbols and subscripts pertinent to the bias voltage, carrier type,
band, and transport direction in the following general procedure for solving the appro-
priate three-dimensional, single-band, effective-mass, time-independent Schrödinger
equation (3D-SBEM-TISE) [10] for the 3D wavefunctions |Ψ〉 (neglecting relativistic
effects and spin-orbit coupling),

[HKE + V] |Ψ〉 = E|Ψ〉.(3.19)

Here, E is the total energy of the particle, V is the operator corresponding to the
potential-energy envelope, with V (r) def= 〈r | V〉 being the spatial envelope that in-
cludes effects from device-structure as well as externally-applied voltage (henceforth
simply termed the potential energy function or PEF), and HKE is the kinetic en-
ergy operator that includes the position-dependent effective-mass. Because of open
boundary conditions, all E ≥ 0 are allowed eigen-energies. We assume that the ap-
plied voltage drops entirely across the device in a linear manner.

Two frequently-used formulations for the kinetic energy component of the Hamil-
tonian are the BenDaniel-Duke form [5],

〈r|H(BD)
KE |Ψ〉 ≡ H(BD)

KE (r) Ψ (r)(3.20)
def= − ~2

2m0
∇ •

(
1

m (r)
∇Ψ (r)

)
,

and the form proposed by Bastard et. al. [4],

〈r|H(GB)
KE |Ψ〉 ≡ H(GB)

KE (r) Ψ (r)(3.21)
def= − ~2

4m0

[
∇2
(

1
m (r)

Ψ (r)
)

+ 1
m (r)

∇2Ψ (r)
]
.

For either form of the KE operator, we solve Eqn. (3.19) for the wavefunction
over the entire device in two steps:
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1. We divide the device into regions and establish the form for Ψ (r) within each
as a linear combination of known basis functions and unknown coefficients in Section
4, and

2. We apply coupling-conditions at inter-region boundaries to arrive at con-
straints on the coefficients in Section 5 so that Ψ (r) remains a global solution to the
3D-SBEM-TISE over the entire device.

Section 6 employs the results from these two sections to deduce simplified scatter-
ing conditions (diffraction) and a simple formula for transmitted phase current that
naturally leads to an expression for the total current per unit-cell.

4. Region-wise wavefunction establishment . Regions comprising the de-
vice are conceptually classified as contacts, spacers or quantum dot layers (QDL) as
discussed in Section 2.1. The following subsections establish the form of the wave-
function in each region.

4.1. Wavefunction in contacts. The isotropy of the contacts, simplifies Eqn.
(3.19) (for both cases of the KE operator) to,

[
− ~2

2m0m(CON)
∇2 + V (CON)

]
Ψ (r) = EΨ (r) ,(4.1)

wherem(CON) is the (constant) relative effective mas. Allowed solutions are planewaves
with wavevectors k ∈ R3. During model development we take the wavefunction in
the contacts to be a general superposition,

Ψ(CON) (r;E) def=
¨

K(CON)
‖ (E)

ψ(CON)
(
z;E,k‖

) 〈
r‖ | k‖

〉
d2k‖,(4.2)

ψ(CON)
(
z;E,k‖

) def= a(CON)
(
k‖
)
eik

(CON)
z (E,k‖)z(4.3)

+ b(CON)
(
k‖
)
e−ik

(CON)
z (E,k‖)z.

The wavevector distribution includes only propagating phases and neglects evanes-
cent phases because these are asymptotically negligible and do not contribute to prob-
ability current.

Eqns.(3.7) and (3.10) for an incident phase with wavevector k(INC) = k(INC)
‖ +

k(INC)
z ẑ are recovered from Eqn. (4.2) by imposing,

a(INJ)
(
k(INC)
‖

)
= 2πδ

(
k‖ − k(INC)

‖

)
,(4.4)

b(TRA)
(
k‖
)
≡ 0.(4.5)

Then, following the establishment of the wavefunction throughout the device and us-
ing E = E(INJ) (k(INC)) along with Eqn. (3.14) for the correct longitudinal wavevectors,
we get

ρ
(
k(INC),k‖ + k(INJ)

z

(
E,k‖

)
ẑ
)
7→ (2π)2 b(INJ)

(
k‖
)
,(4.6)

τ
(
k(INC),k‖ + k(TRA)

z

(
E,k‖

)
ẑ
)
7→ (2π)2 a(TRA)

(
k‖
)
.(4.7)
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4.2. Wavefunction in spacers. Spacer and wetting-layers are similar to con-
tacts except that the applied external voltage perturbs the PEF by Vbias (z) = V0 +
V ′z, in a local z−coordinate system, where V0 is the potential energy at the start of the
region and V ′ is the potential energy gradient induced (assumed constant throughout
the device). The longitudinal components of the wavefunction are now expressed in
terms of Airy functions ([26, Chp. 7]) and the general wavefunction is a superposition
of all allowed solutions,

Ψ(SPC)
(
r‖, z;E

)
=
¨

K
ψ(SPC)

(
z;E,k‖, V0, V

′) 〈r‖ | k‖〉 d2k‖,(4.8)

ψ(SPC)
(
z;E,k‖, V0, V

′) = a(SPC)
(
k‖;E

)
Ai
(
σ
(
z;E,k‖, V0, V

′))(4.9)
+ b(SPC)

(
k‖;E

)
Bi
(
σ
(
z;E,k‖, V0, V

′)) ,
K(SPC)
‖ (E) def=

{
k‖ ∈ K |E(SPC)

z

(
E,k‖

)
> 0
}
,(4.10)

E(SPC)
z

(
E,k‖

)
= E −

~2k2
‖

2m0m(SPC)
,(4.11)

σ
(
z;E,k‖, V0, V

′) def= 3

√
2mV ′

~2

(
z −

[
Ez
(
E,k‖

)
− V0

]
V ′

)
,(4.12)

where a(SPC)
(
k‖;E

)
and b(SPC)

(
k‖;E

)
are constants to be determined from boundary

conditions. Unlike the case of contacts, lateral wavevectors are distributed over all of K
- longitudinally evanescent states (for which σ > 0) represent tunneling contributions
since the spacer regions are finite.

4.3. Wavefunction in QDL. The generality of quantum dot geometries (mani-
fest in effective-mass and potential energy profiles), makes analytical solution possible
only in very special cases. In this section we develop a two-step method to solve for a
numerical approximation to the exact envelope function for general geometries in the
QDL. We first make an exact transformation of the 3D-SBEM-TISE, which is a PDE
of a scalar function in 3 spatial variables, to an infinite-dimensional (multi-component)
vector ODE in spatial variable z alone. We then discretize along the z-axis and solve
for the approximate wavefunction in each slice using a piecewise-constant approxima-
tion for the geometry.

4.3.1. Transformation of 3D-SBEM-TISE to 1D Vector ODE. In the
QDL, m (r) and V (r) show 3D variation due to QD structure - lateral variation is
periodic. In addition, V (r) includes the 1D, linear contribution from the applied bias,
i.e., V (r) = Vstruct (r) + Vbias (z) . The restriction of the Hamiltonian to an arbitrary
z = z0 becomes,

H|z=z0
= H‖KE

∣∣∣
z=z0

+ H⊥KE
∣∣
z=z0

+ Vstruct|z=z0
+ Vbias|z=z0

,(4.13)

where the PEF and effective mass show periodic, lateral variation,

Vstruct
(
r‖ + R‖lm; z0

)
≡ Vstruct

(
r‖; z0

)
, (l,m) ∈ Z2(4.14)

m
(
r‖ + R‖lm; z0

)
≡ m

(
r‖; z0

)
,
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and H‖KE contains all terms with no partial z-derivatives and H⊥KE contains all terms
with partial z-derivatives. Expressions for these operators for both cases of the KE
operator are

H(BD)‖
KE

(
r‖; z0

)
f
(
r‖
)

= − ~2

2m0
∇‖ •

{
1

m
(
r‖; z0

)∇‖f (r‖)
}

(4.15)

H(BD)⊥
KE

(
z; r‖

)
f (z)

∣∣∣
z=z0

= − ~2

2m0

∂

∂z

{
1

m
(
z; r‖

) ∂
∂z
f (z)

}∣∣∣∣∣
z=z0

(4.16)

H(GB)‖
KE

(
r‖; z0

)
f
(
r‖
)

=(4.17)

− ~2

4m0

[
∇2
‖

{
1

m
(
r‖; z0

)f (r‖)
}

+ 1
m
(
r‖; z0

)∇2
‖f
(
r‖
)]
,

H(GB)⊥
KE

(
z; r‖

)
f (z)

∣∣∣
z=z0

=(4.18)

− ~2

4m0

[
∂2

∂z2

{
1

m
(
z; r‖

)f (z)

}
+ 1
m
(
z; r‖

) ∂2

∂z2 f (z)

]∣∣∣∣∣
z=z0

.

To exploit the lateral symmetry, we define a new, local, laterally-periodic “Hamil-
tonian” operator H‖ (z0) and invoke the Bloch theorem [1] to use g‖ ∈ f‖ and band-
indices n ∈ N to index its eigenenergies and eigenfunctions,

H‖
∣∣∣
z=z0

= H‖KE

∣∣∣
z=z0

+ Vstruct|z=z0
,(4.19)

H‖
∣∣∣
z=z0

∣∣ng‖ (z0)
〉

= εng‖ (z0)
∣∣ng‖ (z0)

〉
.(4.20)

The representation and properties of these lateral eigenstates, discussed in Appendix
B, are useful in subsequent derivations.

It can be proved that the lateral Hamiltonian H‖
∣∣
z=z0

is hermitian when either
form of the kinetic energy operator (Eqn. (3.20), Eqn. (3.21)) is used. In each case,
we assume that the set Φ (z) =

{∣∣ng‖ (z0)
〉
|n ∈ N,g‖ ∈ f‖

}
of lateral eigenfunc-

tions forms a complete basis of orthogonal (without loss of generality, orthonormal)
functions for representing well-behaved functions of r‖ - this should be the case for
realistic effective-mass and potential energy distributions. Therefore, the restriction
of the global 3D wavefunction Ψ (r) to z = z0, which we denote as the ket |Ψ (z0)〉,
has a representation in this basis with (as yet unknown) complex-valued coordinates
cng‖ (z0),

|Ψ (z0)〉 ≡
∑
n∈N

¨
f||

cng‖ (z0)
∣∣ng‖ (z0)

〉
d2g‖,(4.21)

To determine these coefficients, we substitute (4.20) and Eqn. (4.21) into Eqn.
(3.19) and rearrange to get,

H⊥KE (z0)
∑
n∈N

¨
f||

cng‖ (z0)
∣∣ng‖ (z0)

〉
d2g‖ =(4.22)

∑
n∈N

¨
f||

(
E − Vbias (z0)− εng‖ (z0)

)
cng‖ (z0)

∣∣ng‖ (z0)
〉
d2g‖.
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After projecting both sides onto various
∣∣∣n′g′‖ (z0)

〉
∈ Φ (z), collecting the results,

and generalizing z0 to z, we get the following ODE for the vector of coefficients c (z),

d2

dz2 c (z) + P (z) d

dz
c (z) +

[
Q (z) + M (z)K2

z (z)
]
c (z) = 0.(4.23)

The expressions for the matrix-elements of operators P (z), Q (z), M (z) and
K2
z (z) for both BenDaniel-Duke and G.Bastard forms of the KE operator are derived

in Appendix C. The operators in this equation quantitatively relate the coupling
between various modes to the evolution of their amplitudes in the wavefunction as we
move along z. They are are therefore termed local mode-coupling operators for the
QDL. Both P (z) and Q (z) explicitly capture the z−variation of the effective-mass
profile. Operators Q (z) and K2

z (z) implicitly capture the z−variation of the potential
energy profile through the z−variation of the lateral wavefunctions and eigenenergies.

The matrix for K2
z (z) is diagonal in the lateral eigenbasis. The matrices for P (z),

Q (z) and M (z) assume block-diagonal form when the lateral eigenbasis at z is ordered
according to a scheme where the eigenfunctions for all band-indices corresponding to
each g‖ ∈ f‖ are clustered together (order is immaterial) for any linearized ordering
of the elements in the Brillouin zone. We term such an order a natural order.

Definition 4.1. A natural order Φ≤ (z) of the lateral eigenbasis Φ (z) is the
partially-ordered basis obtained by imposing a partial order ≤ over Φ (z) such that,

∀g‖,g′‖ ∈ f‖, ∀n, n′ ∈ N :
∣∣ng‖ (z)

〉
≤
∣∣∣n′g′‖〉 if g‖ < g′‖,

for any total order < on the set f‖ of Brillouin-zone vectors.
In fact, this definition is equivalent to definition 2.3 due to the properties discussed

in Appendix B. The block-diagonal structure of the local mode-coupling matrices in
a natural order is proved in Appendix D.

For each g‖ ∈ f‖, the set Φ[g‖] (z)
def=
{∣∣ng‖ (z)

〉
| n ∈ N

}
⊂ Φ (z) generates the

BZV-subspace corresponding to g‖ as proved in proposition B.1 in Appendix B. Using
the group-theoretic facts in Appendix A, Eqn. (4.23) can equivalently be expressed
in a form that restricts all quantities to an arbitrary BZV-subspace,

d2

dz2 c[g‖] (z) + P[g‖] (z)
d

dz
c[g‖] (z) + R[g‖]c[g‖] (z) = 0,(4.24)

R[g‖] (z)
def= Q[g‖] (z) + M[g‖] (z)K

2
z[g‖] (z) .(4.25)

Therefore, Eqn. (4.23) entirely block-diagonal in a natural ordering of the lateral
eigenbasis. Concise expressions for the matrix elements in Eqn. (4.24) are derived in
Appendix E.

Since there is no coupling between subspaces corresponding to differing g‖ at
any value of z, computations on each g‖-block (BZV-subspace) can be performed
independently of others. Hence it is unnecessary to actually impose any sort of total
order on the elements of the Brillouin zone.

To eliminate the first derivative term from Eqn. (4.23), we introduce a new
unknown vector χ (z) which is related to c (z) by (an as yet unknown) linear trans-
formation C (z),

12



c (z) def= C (z)χ (z) ,(4.26)

i.e., cng‖ (z) =
¨

f‖

∑
n′∈N
Cng‖,n′g′‖ (z) χn′g′‖ (z) d2g‖.

Then, substituting Eqn. (4.26) into Eqn. (4.23) and constraining C (z) to respect,

d

dz
C (z) = −1

2
P (z)C (z) .(4.27)

we get,

d2

dz2χ (z) + W (z)χ (z) = 0,(4.28)

W (z) = C−1 (z)G (z)C (z) ,(4.29)
G (z) = G0 (z) + M(z)K2

z (z) ,(4.30)

G0 (z) = −1
2
d

dz
P (z)− 1

4
P2 (z) + Q (z) .(4.31)

Choosing initial condition c (0) = χ (0) for Eqn. (4.27) so that C (0) = I extends
the block-diagonal nature of matrices for P (z), Q (z), and M (z) to the matrices for
W (z), G (z), and G0 (z) in Eqns. (4.29)-(4.31) in a natural ordering of the lateral
eigenbasis. Appendix E presents expressions for G0[g‖] (z) for both forms of the KE
operator. The fact that ∃D (z) : C (z) ≡ exp (D (z)) is proved in [7]. For any such
exponential, C−1 (z) ≡ exp (−D (z)) is well-defined for any D (z) [13].

4.3.2. Numerical solution procedure . We now divide the QDL into slices
along the z-axis with slice thickness ∆z being empirically selected to be so small
that C (z) and G (z) vary quasi-statically over this interval and are locally well-
approximated by the z−invariant operators Cj and Gj in the jth slice (j = 1, 2, . . .),
evaluated at the middle of the slice. Then, within each slice, Eqn. (4.28) takes the
form,

d2

dz2χj (z) + Wjχj (z) = 0, Wj = C−1
j GjCj .(4.32)

Because Wj is constant, the solution to this equation is of the form

χj (z) = Θ′j [exp (iΞjz)aj + exp (−iΞjz)bj ] ,(4.33)
WjΘ′j = Θ′jΞ2

j ,(4.34)

where we label aj and bj as the advancing-mode coefficients and retreating-mode
coefficients resepectively, and the remaining terms come from the eigen-decomposition
of Wj as per Eqn. (4.34) - Θ′j is analogous to the matrix of eigenvectors-as-columns
in a finite-dimensional case, and Ξ2

j is analogous to the diagonal matrix of eigenvalues.
The values of the advancing and retreating mode-coefficients, when determined from
boundary conditions, will completely establish the χj (z).
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Since Wj and Gj are related by the similarity transform in Eqn. (4.29), their
eigenvalues are identical and their eigenvectors are related,

GjΘj = ΘjΞ2
j , Θj = CjΘ′j .(4.35)

Therefore, using Eqn. (4.26) and Eqn. (4.35), Eqn. (4.33) yields,

cj (z) = Θj [exp (iΞjz)aj + exp (−iΞjz)bj ] .(4.36)

This equation expresses the longitudinal variations for various lateral modes within
each slice, as linear combinations of advancing and retreating effective 1D planewaves
(with complex-valued wavenumbers).

The approximate spatial behavior of the wavefunction within the jth slice in a
local z−coordinate system is therefore,

Ψ(QDL)
j

(
r‖, zj

)
=
∑
n∈N

¨
f‖
cj,ng‖ (zj)φj,ng‖

(
r‖
)
d2g‖, 0 ≤ zj ≤ lj(4.37)

where the φj,ng‖
(
r‖
)
denote spatial representation of the corresponding lateral eigen-

functions in the equatorial lateral plane of the jth slice.
While the intermediate C (z), introduced in Eqn. (4.26), does not appear explic-

itly in Eqn. (4.36), its presence is implicit in the structure of Θj . Because block-
diagonality is preserved throughout, the above numerical procedure may actually be
performed independently on restrictions to each BZV-subspace,

cj[g‖] (z) = Θj[g‖]
[
exp

(
iΞj[g‖]z

)
aj[g‖] + exp

(
−iΞj[g‖]z

)
bj[g‖]

]
.(4.38)

This is the computationally simpler approach which has the twin advantages of being
highly parallel and requiring much lesser memory than a naive implementation using
Eqn. (4.36).

5. Inter-region wavefunction coupling . We now observe that in each three
types of regions - contacts (Eqn. (4.2)), spacers (Eqn. (4.8)) and QDL slices (Eqn.
(4.37)), the wavefunctions are linear combinations of known modes (indexed by a
suitable variable ι with range B). These modes are 3D basis functions that are sepa-
rable into a lateral component |ι〉‖, and advancing/retreating longitudinal components
|ι〉(±)
⊥ ,

|Ψ〉 =
∑
ι∈B

(
aι |ι〉(+) + bι |ι〉(−)

)
(5.1)

|ι〉(±) def= |ι〉‖ |ι〉
(±)
⊥(5.2)

where the aι and the bι denote the (as yet unknown) advancing- and retreating- mode
coefficients respectively within slices. Table 5.1 clarifies the spatial behavior of these
modes in each region. The set of lateral components forms a complete, orthonormal
basis for F in each case. Coefficients in adjacent regions are related by the continuity
of the wavefunction and its associated probability current across the interface [5, 4] -
a requirement imposed by the forms of the Hamiltonian for both KE operators.
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Contact Spacer QDL
ι k‖ k‖

(
n,g‖

)
B K K N× f‖〈

r‖ | ι
〉
‖

1
2π e

ik‖•r‖ 1
2π e

ik‖•r‖ φng‖
(
r‖; z

)
〈z | ι〉(+)

⊥ eikz(E,k‖)z Ai
(
z;k‖, E, V0, V

′) {Θ exp (iΞz)}ng‖

〈z | ι〉(−)
⊥ e−ikz(E,k‖)z Bi

(
z;k‖, E, V0, V

′) {Θ exp (−iΞz)}ng‖
Table 5.1

Spatial representations for basis modes for the three types of regions

Let J denote the total number of regions between the contacts with the in-
jecting contact at index 0 and the transmitting contact at index J + 1. We use
j ∈ [0, 1, . . . , J + 1] as the region-index, especially as subscript on various quantities.
Let lj denote the length of region j and zj ∈ [0, lj ] denote the local z-coordinate
within it. The boundary conditions to be enforced at its interface with region j + 1
are,

Ψj

(
r‖, zj

)∣∣
zj=lj

= Ψj+1
(
r‖, zj+1

)∣∣
zj+1=0 ,(5.3)

1
mj

(
r||; zj

) ∂
∂z

Ψj

(
r‖, zj

)∣∣∣∣∣
zj=lj

= 1
mj+1

(
r||; zj+1

) ∂
∂z

Ψj+1
(
r‖, zj+1

)∣∣∣∣∣
zj+1=0

.(5.4)

At this interface, using Eqn. (5.1) in Eqn. (5.3) and Eqn. (5.4) we may express
each aj+1,ι and bj+1,ι in terms of all the aj,ι′ and bj,ι′ by projecting both sides onto
the |ι〉‖j+1,[

〈0 | ι〉(+)
⊥j+1 〈0 | ι〉(−)

⊥j+1
〈0| ddz |ι〉

(+)
⊥j+1 〈0| ddz |ι〉

(−)
⊥j+1

] [
aj+1,ι
bj+1,ι

]
=(5.5)

∑
ι′∈Bj

[
x

(j+1,j)
1 ι,ι′ 0

0 x
(j+1,j)
2 ι,ι′

][
〈lj | ι′〉(+)

⊥j 〈lj | ι′〉(−)
⊥j

〈lj | ddz |ι
′〉(+)
⊥j 〈lj | ddz |ι

′〉(−)
⊥j

] [
aj,ι′

bj,ι′

]
,

where,

x
(j+1,j)
1 ι,ι′

def=
〈
(ι)j+1 | (ι

′)j
〉

(5.6)

=
¨

R2
φ∗j+1, ι

(
r‖
)
φj, ι′

(
r‖
)
d2r‖,

x
(j+1,j)
2 ι,ι′

def=
〈
(ι)j+1

∣∣∣Mj+1M−1
j

∣∣∣(ι′)j〉(5.7)

=
¨

R2
φ∗j+1, ι

(
r‖
) mj+1

(
r‖
)

mj

(
r‖
) φj, ι′

(
r‖
)
d2r‖.

The above equations represent forward-scattering of the (amplitudes of) compo-
nents in region j into components in region j + 1, and may be recast as,

[
aj+1,ι
bj+1,ι

]
=
∑
ι′∈Bj

T(j+1, j) ι,ι′

[
aj,ι′

bj,ι′

]
(5.8)
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where the T(j+1, j) ι,ι′ are the inter-mode transfer matrices. Defining dj to be the
vector of all coefficients in region j, the above equation may be written as,

dj+1 = T(j+1, j)dj ,

T(j+1, j)
def=

∑
ι ∈ Bj+1
ι′ ∈ Bj

|ι〉‖ 〈ι
′|‖ ⊗T(j+1, j) ι,ι′ ,(5.9)

where T(j+1, j) is the transfer operator or T-operator for the interface. Back-scattering
from modes |ι′〉j+1 to modes |ι〉j is described by the inverse of the above T-matrix,

dj = T(j, j+1)dj+1,

T(j, j+1) = T−1
(j+1, j).

The T-operator is, in general, a linear transformation from the space F ⊗C2 to itself.
Definition 5.1. In this section, unless mentioned otherwise, the terms space

and subspace refer to F ⊗C2 and its subspaces, and not to F and its subspaces. The
definitions of natural order and BZV subspaces can intuitively be extended to F⊗C2.
Let Φ def=

{
|ι〉‖ | ι ∈ B

}
denote a basis for F in some region. Let Φ[g‖] denote a basis

for F[g‖] in that region and let B[g‖] denote the set of indices corresponding to the
elements in Φ[g‖]. For example, in spacers and contacts, B[g‖] = G[g‖] and Φ[g‖] =
G[g‖] whereas in a QDL slice, B[g‖] =

{(
n,g‖

)
|n ∈ N

}
and Φ[g‖] =

{∣∣ng‖〉 |n ∈ N
}
.

Let E def=
{
e1

def=
[

1
0

]
, e2

def=
[

0
1

]}
denote a basis for C2.

Definition 5.2. The spaces F[g‖] ⊗ C2 are termed Brillouin-zone-vector (or
BZV-) subspaces of F ⊗ C2.

Definition 5.3. A natural order of the basis-set Φ⊗E def= {|ι〉 ⊗ e | ι ∈ B , e ∈ E}
for F ⊗C2 is the partially-ordered basis-set obtained by imposing a partial order 5 on
Φ⊗ E which is the extension of a natural order ≤ defined on Φ,

∀ι, ι′ ∈ B, ∀e, e′ ∈ E : |ι〉 ⊗ e 5 |ι′〉 ⊗ e′ if ι ≤ ι′.

As we prove in the following subsections, the T-operator assumes convenient,
block-partitioned representations in certain orderings of the basis elements of the
domain and range. We now define these basis-set-ordering relations.

Definition 5.4. For the BZV subspace F[g‖]⊗C2 corresponding to any g‖ ∈ f‖,

a mode-major order of its basis-set Φ[g‖] ⊗ E def=
{
|ι〉 ⊗ e | ι ∈ B[g‖] , e ∈ E

}
is the

partially-ordered basis obtained by imposing a partial order ≤m on Φ[g‖] ⊗E, defined
such that,

∀ι, ι′ ∈ B[g‖] ∀e, e
′ ∈ E : |ι〉 ⊗ e ≤m |ι′〉 ⊗ e′ if ι <m ι′,

for any total order <m on B[g‖].
Definition 5.5. For the BZV subspace F[g‖]⊗C2 corresponding to any g‖ ∈ f‖,

a component-major order of the basis-set Φ[g‖] ⊗ E def=
{
|ι〉 ⊗ e | ι ∈ B[g‖] , e ∈ E

}
is
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the partially-ordered basis obtained by imposing a partial order ≤c on Φ[g‖]⊗E, defined
such that,

∀ι, ι′ ∈ B[g‖], ∀e, e
′ ∈ E : |ι〉 ⊗ e ≤c |ι′〉 ⊗ e′ if e <c e′,

for any total order <c on E. For simplicity, we take e1 <c e2. Definition 5.4 clusters
the basis elements {|ι〉 ⊗ e1, |ι〉 ⊗ e2}, for each index ι. The T-matrix resulting from
this order follows in an obvious manner from Eqn. (5.8), in terms smaller of 2×2 inter-
mode T-matrices for each combination of source and destination modes. On the other
hand, definition 5.5 clusters the basis elements {|ι〉 ⊗ e, |ι′〉 ⊗ e, . . .}, with ι, ι′, . . . ∈
B[g‖], for each e ∈ E, and makes the T-matrix a 2× 2 block-partitioned matrix where
each block relates the full set of advancing or retreating source components to the full
set of advancing or retreating destination components,

[
aj+1
bj+1

]
= T(j+1, j)

[
aj
bj

]
,(5.10)

T(j+1, j) ≡
[

T(j+1, j) a←a T(j+1, j) b←a
T(j+1, j) a←b T(j+1, j) b←b

]
Subsections 5.1-5.5 prove that the lateral translational symmetry in the device

leads to very specific patterns of inter-region mode-coupling at all types of interfaces,
and derive concise expressions for the respective local transfer matrices. Section 5.6
consolidates these results to arrive at the properties of the global transfer matrix that
couples the wavefunction coefficients at both contacts.

5.1. Inter-slice coupling in QDL . Applying the general T-matrix procedure
at an inter-slice boundary within a QDL, we arrive at the following results. Details
of the derivation are provided in Appendix F.1.

Theorem 5.6. At the interface between two adjacent QDL slices, with region
indices j and j + 1, inter-region coupling occurs only between modes whose indices
share the same Brillouin-zone-vector, i.e., for each g‖ ∈ f‖, modes

∣∣ng‖〉j couple
only to modes

∣∣n′g‖〉j+1, for all n, n′ ∈ N, and vice-versa. There is no coupling

between modes
∣∣ng‖〉j and

∣∣∣n′g′‖〉
j+1

when g‖ 6= g′‖ (g′‖ ∈ f‖) for all n, n′ ∈ N.
The expression for the restriction of the local T-matrix to an arbitrary BZV-

subspace (g‖ ∈ f‖) is, with component-major basis-order,

 a(QDL)
j+1[g‖]

b(QDL)
j+1[g‖]

 def= T(QDL|QDL)

(j+1,j)[g‖]

 a(QDL)
j[g‖]

b(QDL)
j[g‖]

 ,(5.11)

T(QDL|QDL)

(j+1, j)[g‖] = 1
2

[
I I
I −I

][ I 0
0 Ξ−1

j+1[g‖]

] Θ−1
j+1[g‖] 0
0 Θ−1

j+1[g‖]


×

[ X(QDL|QDL)

1(j+1, j)[g‖] 0
0 X(QDL|QDL)

2(j+1, j)[g‖]

][
Θj[g‖] 0

0 Θj[g‖]

]

×

[
I 0
0 Ξj[g‖]

] [
I I
I −I

] exp
(
iΞj[g‖]lj

)
0

0 exp
(
−iΞj[g‖]lj

)  ,(5.12)

17



where the matrix elements for the exchange operators are,

X(QDL|QDL)

1(j+1, j)[g‖]n1n2
= û∗j+1,n1g‖ • ûj,n2g‖ ,(5.13)

X(QDL|QDL)

2(j+1, j)[g‖]n1n2
= û∗j+1,n1g‖ •

[
m̂(QDL|QDL)

(j+1, j) � ûj,n2g‖

]
,(5.14)

m
(QDL|QDL)
(j+1, j)

(
r‖
) def=

m(QDL)
j+1

(
r‖
)

m(QDL)
j

(
r‖
) ≡ ∑

(l,m)∈Z2

m̂
(QDL|QDL)
(j+1, j)lm eiG‖lm•r‖ .(5.15)

From the structure of the T-matrix above, we draw the following conclusion.
Corollary 5.7. The BZV-subspaces F[g‖]⊗C2, g‖ ∈ f‖, are irreducible invari-

ant subspaces for T(QDL|QDL)
(j+1, j) . The local T-operator is the direct-sum of its restrictions

to all BZV subspaces and its matrix-representation is block-diagonal in a natural order
of the eigenbases in both slices resulting from the imposition of the same total order
< on f‖,

T(QDL|QDL)
(j+1, j) ≡

⊕
g‖∈f‖

T(QDL|QDL)

(j+1, j)[g‖].(5.16)

5.2. Spacer-QDL coupling . Applying the general T-matrix procedure at the
interface between a spacer at index j and a QDL at index j′ = j± 1, we arrive at the
following results. Details of the derivation and new notation are provided in Appendix
F.2.

Theorem 5.8. At the interface between a spacer and a QDL, for each g‖ ∈
f‖, coupling occurs only between spacer-region modes with lateral behavior

∣∣g‖lm〉 =∣∣g‖ + G‖lm
〉
, (l,m) ∈ Z2, and QDL modes with lateral behavior

∣∣ng‖〉, n ∈ N. There
is no coupling between spacer modes with lateral behavior

∣∣g‖lm〉 and QDL modes with
lateral behavior

∣∣∣ng′‖〉, for all n ∈ N, (l,m) ∈ Z2, when g‖ 6= g′‖.
Corollary 5.9. The BZV-subspaces F[g‖] ⊗ C2, g‖ ∈ f‖, are irreducible in-

variant subspaces for T(QDL|SPC)
(j+1, j) and T(SPC|QDL)

(j+1, j) . The local transfer operators are the
direct sum of their restrictions to all BZV-subspaces and are block-diagonal in natural
ordering of eigenbases in both regions resulting from the imposition of the same total
order < on f‖.

T(QDL|SPC)
(j+1, j) ≡

⊕
g‖∈f‖

T(QDL|SPC)

(j+1, j)[g‖],(5.17)

T(SPC|QDL)
(j+1, j) ≡

⊕
g‖∈f‖

T(SPC|QDL)

(j+1, j)[g‖].(5.18)

5.2.1. Spacer-to-QDL coupling. Using theorem 5.8 and corollary 5.9, it suf-
fices to provide the expression for the restriction of the T-matrix to an arbitrary BZV
subspace. For some g‖ ∈ f‖ , with component-major basis-order,

[ a(QDL)

j+1[g‖]
b(QDL)

j+1[g‖]

]
def= T(QDL|SPC)

(j+1, j)[g‖]

[ a(SPC)

j[g‖]
b(SPC)

j[g‖]

]
,(5.19)
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T(QDL|SPC)

(j+1, j)[g‖] = 1
2

[
I I
I −I

] [ I 0
0 −iΞ−1

j+1[g‖]

]

×

 Θ−1
j+1[g‖] 0
0 Θ−1

j+1[g‖]

[ X(QDL|SPC)

1(j+1, j)[g‖] 0
0 X(QDL|SPC)

2(j+1, j)[g‖]

]

×

[
Aj[g‖] (lj ;E, V0j , V

′) Bj[g‖] (lj ;E, V0j , V
′)

A′
j[g‖] (lj ;E, V0j , V

′) B′
j[g‖] (lj ;E, V0j , V

′)

]
,(5.20)

where the matrix elements for the exchange operators X(QDL|SPC)
1(j+1,j) and X(QDL|SPC)

2(j+1,j) are,

X(QDL|SPC)

1(j+1, j)[g‖]n,lm = û∗j+1,ng‖,lm,(5.21)

X(QDL|SPC)

2(j+1, j)[g‖]n,lm =
(
m̂(QDL|SPC)

(j+1, j) � û∗j+1,ng‖

)
lm
,(5.22)

m
(QDL|SPC)
(j+1, j)

(
r‖
)

=
m

(QDL)
j+1

(
r‖
)

m
(SPC)
j

(5.23)

and m̂(QDL|SPC)
(j+1, j) denotes the vector of Fourier-series coefficients for the periodic ratio-

of-effective-masses functionm(QDL|SPC)
(j+1, j)

(
r‖
)
. The Airy function operators in Eqn. (5.20)

have diagonal matrix representation with elements,

Aj[g‖]lm,lm
(
lj ;g‖, E, V0j , V

′) = Ai
(
σ
(
lj ;g‖lm, E, V0j , V

′)) ,(5.24)

with similar expressions for A′
j[g‖] (lj ;E, V0j , V

′), Bj[g‖] (lj ;E, V0j , V
′) and B′

j[g‖] (lj ;E, V0j , V
′).

Here, V0j is the potential energy at zj = 0.

5.2.2. QDL-to-spacer coupling . The local T-matrix, restricted to an arbi-
trary BZV-subspace

(
g‖ ∈ f‖

)
with component-major basis-order, is

[ a(SPC)

j+1[g‖]
b(SPC)

j+1[g‖]

]
def= T(SPC|QDL)

(j+1, j)[g‖]

[ a(QDL)

j[g‖]
b(QDL)

j[g‖]

]
,(5.25)

T(SPC|QDL)

(j+1, j)[g‖] =

[
Aj+1[g‖]

(
0;g‖, E, V0(j+1), V

′) Bj+1[g‖]
(
0;g‖, E, V0(j+1), V

′)
A′
j+1[g‖]

(
0;g‖, E, V0(j+1), V

′) B′
j+1[g‖]

(
0;g‖, E, V0(j+1), V

′)
]−1

×

[ X(SPC|QDL)

1(j+1, j)[g‖] 0
0 X(SPC|QDL)

2(j+1, j)[g‖]

][
Θj[g‖] 0

0 Θj[g‖]

]

×

[
I 0
0 iΞj[g‖]

] [
I I
I −I

] [
exp (iΞj lj) 0

0 exp (−iΞj lj)

]
(5.26)

where the matrix elements for the exchange operators X(SPC|QDL)
1(j+1, j) and X(SPC|QDL)

2(j+1, j) are,
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X(SPC|QDL)

1(j+1, j)[g‖]lm,n = ûj,ng‖,lm,(5.27)

X(SPC|QDL)

2(j+1, j)[g‖]lm,n =
(
m̂(SPC|QDL)

(j+1, j) � ûj,ng‖

)
lm
,(5.28)

m
(SPC|QDL)
(j+1, j)

(
r‖
)

=
m

(SPC)
j+1

m(QDL)
j

(
r‖
) ,(5.29)

and m̂(SPC|QDL)
(j+1, j) denotes the vector of Fourier-series coefficients for the periodic ratio-

of-effective-masses function m(SPC|QDL)
(j+1, j)

(
r‖
)
.

5.3. Contact-QDL coupling . This case must be considered when a QDL is
grown directly on the bottom contact layer, or when the top contact layer is grown
immediate above a QDL. The lateral basis functions are identical in the contact and
spacer regions. Therefore, the coupling patterns derived in Section 5.2 also apply to
this case.

Theorem 5.10. At the interface between a contact and a QDL, for each g‖ ∈ f‖,
coupling occurs only between contact modes with lateral behavior

∣∣g‖lm〉 =
∣∣g‖ + G‖lm

〉
,

(l,m) ∈ Z2, and QDL modes with lateral behavior
∣∣ng‖〉, n ∈ N. There is no cou-

pling between contact modes with lateral behavior
∣∣g‖lm〉 and QDL modes with lateral

behavior
∣∣∣ng′‖〉, for all n ∈ N, (l,m) ∈ Z2, when g‖ 6= g′‖.

Corollary 5.11. The BZV-subspaces F[g‖] ⊗ C2, g‖ ∈ f‖, are irreducible
invariant subspaces for the local T-operators T(QDL|INJ)

(1, 0) and T(TRA|QDL)
(J+1, J) . These operators

are the direct sum of their restrictions to all BZV-subspaces and are block-diagonal
in natural ordering of eigenbases in both regions resulting from the imposition of the
same total order < on f‖.

T(QDL|INJ)
(1, 0) ≡

⊕
g‖∈f‖

T(QDL|INJ)

(1, 0)[g‖],(5.30)

T(TRA|QDL)
(J+1, J) ≡

⊕
g‖∈f‖

T(TRA|QDL)

(J+1, J)[g‖].(5.31)

5.3.1. Injecting-contact-to-QDL coupling. The restricted transfer matrix
for this case is, with component-major basis-ordering,

[ a(QDL)

1[g‖]
b(QDL)

1[g‖]

]
= T(QDL|INJ)

(1,0)[g‖]

[ a(INJ)

0[g‖]
b(INJ)

0[g‖]

]
,(5.32)

T(QDL|INJ)

(1,0)[g‖] = 1
2

[
I I
I −I

] [ I 0
0 Ξ−1

1[g‖]

] Θ−1
1[g‖] 0
0 Θ−1

1[g‖]


×

[ X(QDL|INJ)

1(1,0)[g‖] 0
0 X(QDL|INJ)

2(1,0)[g‖]

][
1 0
0 K(INJ)

z[g‖]

] [
I I
I −I

]
(5.33)
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where the matrix elements for the exchange operators X(QDL|INJ)

1(1,0)[g‖] and X(QDL|INJ)

2(1,0)[g‖]
are,

X(QDL|INJ)

1(1,0)[g‖]n,lm = û∗1,ng‖,lm,(5.34)

X(QDL|INJ)

2(1,0)[g‖]n,lm =
(
û∗1,ng‖ � m̂(QDL|INJ)

(1,0)

)
lm
,(5.35)

m(QDL|INJ)
(1,0)

(
r‖
)

=
m(QDL)

1
(
r‖
)

m(INJ)
,(5.36)

where m̂(QDL|INJ)
(1,0) is the vector of Fourier-series coefficients for the periodic effective-

mass-ratio function. The K(INJ)

z[g‖] operator in Eqn. (5.33) has diagonal matrix repre-
sentation,

K(INJ)

z[g‖]lm,lm =
√

2m(INJ) (E − V (INJ))
~2 −

∥∥g‖lm∥∥2
.(5.37)

5.3.2. QDL-to-transmitting-contact coupling. The expression for the re-
stricted local transfer matrix is, with component-major basis-ordering,

[ a(TRA)

J+1[g‖]
b(TRA)

J+1[g‖]

]
= T(TRA|QDL)

(J+1, J)[g‖]

[ a(QDL)

J[g‖]
b(QDL)

J[g‖]

]
,(5.38)

T(TRA|QDL)

(J+1, J)[g‖] = 1
2

[
I I
I −I

] 1 0

0
(
K(TRA)

z[g‖]

)−1

[ X(TRA|QDL)

1(J+1, J)[g‖] 0
0 X(TRA|QDL)

2(J+1, J)[g‖]

]

×

[
ΘJ[g‖] 0

0 ΘJ[g‖]

][
I 0
0 ΞJ[g‖]

] [
I I
I −I

]
×
[

exp (iΞJ lJ) 0
0 exp (−iΞJ lJ)

]
(5.39)

where the matrix elements for the exchange operators X(TRA|QDL)

1(J+1, J)[g‖] and X(TRA|QDL)

2(J+1, J)[g‖]
are,

X(TRA|QDL)

1(J+1, J)[g‖] lm,n = ûJ,ng‖,lm,(5.40)

X(TRA|QDL)

2(J+1, J)[g‖] lm,n =
(
m̂(TRA|QDL)

(J+1, J) � ûJ,ng‖

)
lm
,(5.41)

m(TRA|QDL)
(J+1, J)

(
r‖
)

= m(TRA)

m(QDL)
J

(
r‖
) ,(5.42)

where m̂(TRA|QDL)
(J+1, J) is the vector of Fourier-series coefficients for the periodic effective-

mass-ratio function. The K(TRA)

z[g‖] operator in Eqn. (5.39) has diagonal matrix repre-
sentation,

K(TRA)

z[g‖]lm,lm =
√

2m(TRA) (E − V (TRA))
~2 −

∥∥g‖lm∥∥2
.(5.43)
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5.4. Inter-spacer coupling . Following the general T-matrix derivation proce-
dure, we find that the effective-mass-ratio function in Eqn. (5.7) is constant. There-
fore, the exchange expressions in both Eqn. (5.6) and Eqn. (5.7) reduce to the
product of a constant and the inner product between lateral modes. From Eqn. (4.8),
we note that the lateral behavior in these regions is of the form

∣∣k‖〉j and
∣∣k′‖〉j+1,

k‖,k′‖ ∈ R2. Because of orthonormality,
〈
k′‖ | k‖

〉
=
〈
k‖ | k′‖

〉
= δ

(
k‖ − k′‖

)
, inter-

mode coupling is non-zero only when lateral behavior is identical and this proves the
following theorem.

Theorem 5.12. At the interface between two spacers with region-indices j and
j + 1, for each k‖ ∈ K, modes

∣∣k‖〉j and
∣∣k‖〉j+1 couple only with each other. For

any k′‖ ∈ K, coupling between modes
∣∣k‖〉j and

∣∣k′‖〉j+1 is zero if k‖ 6= k′‖.
Corollary 5.13. The local transfer operator is the direct sum of its restrictions

to all Fk‖⊗C2, k‖ ∈ K. The T-matrix is block-diagonal, with 2×2 blocks, in a mode-
major ordering of the bases and can therefore be expressed as a 2×2 block-partitioned
matrix, with diagonal blocks, in a component-major ordering of the bases.

T(SPC|SPC)
(j+1, j) ≡

⊕
k‖∈K

T(SPC|SPC)

(j+1, j)[k‖].(5.44)

Substituting Eqn. (4.8) into both sides of Eqn. (5.3) and Eqn. (5.4), projecting
onto various

∣∣k‖〉, and grouping the results we get,

[
a(SPC)
j+1

(
k‖
)

b(SPC)
j+1

(
k‖
) ] def= T(SPC|SPC)

(j+1,j)[k‖]

[
a(SPC)
j

(
k‖
)

b(SPC)
j

(
k‖
) ] ,(5.45)

T(SPC|SPC)

(j+1, j)[k‖] =
[

Ai
(
σ
(
0;k‖, E, V0(j+1), V

′)) Bi
(
σ
(
0;k‖, E, V0(j+1), V

′))
Ai′
(
σ
(
0;k‖, E, V0(j+1), V

′)) Bi′
(
σ
(
0;k‖, E, V0(j+1), V

′)) ]−1

×

 1 0

0
m

(SPC)
(j+1)

m
(SPC)
j


×
[

Ai
(
σ
(
lj ;k‖, E, V0j , V

′)) Bi
(
σ
(
lj ;k‖, E, V0j , V

′))
Ai′
(
σ
(
lj ;k‖, E, V0j , V

′)) Bi′
(
σ
(
lj ;k‖, E, V0j , V

′)) ](5.46)

5.5. Spacer-contact coupling . The lateral behavior of modes in both contact
and spacer regions (Eqn. (4.2) and Eqn. (4.8)) is of planewave form

{∣∣k‖〉 | k‖ ∈ R2}.
As with inter-spacer coupling, because of orthonormality, 〈k′‖ | k‖〉 = δ

(
k‖ − k′‖

)
,

coupling is non-zero only between modes whose lateral behavior is identical.
Theorem 5.14. At the interface between a contact and a spacer with region-

indices j and j′ = j ± 1, for each k‖ ∈ K, modes
∣∣k‖〉j and

∣∣k‖〉j′ couple only with
each other. For any k′‖ ∈ K, coupling between modes

∣∣k‖〉j and
∣∣k′‖〉j′ is zero if

k‖ 6= k′‖.
Corollary 5.15. The local transfer operator is the direct sum of its restrictions

to all Fk‖⊗C2, k‖ ∈ K. The T-matrix is block-diagonal, with 2×2 blocks, in a mode-
major ordering of the bases and can therefore be expressed as a 2×2 block-partitioned
matrix, with diagonal blocks, in a component-major ordering of the bases.
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T(SPC|INJ)
(1, 0) ≡

⊕
k‖∈K

T(SPC|INJ)

(1, 0)[k‖],(5.47)

T(TRA|SPC)
(J+1, J) ≡

⊕
k‖∈K

T(TRA|SPC)

(J+1, J)[k‖].(5.48)

Following the general procedure for establishing the T-matrix and using Eqn.
(4.2) and Eqn. (4.8) for the wavefunctions, coupling from the injecting contact to the
following spacer region is given by,

[
a(SPC)
1

(
k‖
)

b(SPC)
1

(
k‖
) ] def= T(SPC|INJ)

(1, 0)[k‖]

[
a(INJ)
0

(
k‖
)

b(INJ)
0

(
k‖
) ] ,(5.49)

T(SPC|INJ)

(1, 0)[k‖] =
[

Ai
(
σ
(
0;k‖, E, 0, V ′

))
Bi
(
σ
(
0;k‖, E, 0, V ′

))
Ai′
(
σ
(
0;k‖, E, 0, V ′

))
Bi′
(
σ
(
0;k‖, E, 0, V ′

)) ]−1

×

[
1 0
0 i

m
(SPC)
1

m(INJ) k
(INJ)
z

(
E,k‖

) ] [ 1 1
1 −1

]
.(5.50)

The local transfer matrix for coupling to the transmitting contact from a spacer
that happens to immediately precede it can be expressed as, for arbitrary k‖ ∈ K,

[
a(TRA)
J+1

(
k‖
)

b(TRA)
J+1

(
k‖
) ] def= T(TRA|SPC)

(J+1, J)[k‖]

[
a(SPC)
J

(
k‖
)

b(SPC)
J

(
k‖
) ] ,(5.51)

T(TRA|SPC)

(J+1, J)[k‖] = 1
2

[
1 1
1 −1

] [ 1 0
0 −im

(TRA)

m
(SPC)
J

× 1
k

(TRA)
z (E,k‖)

]

×
[

Ai
(
σ
(
lJ ;k‖, E, V0J , V

′)) Bi
(
σ
(
lJ ;k‖, E, V0J , V

′))
Ai′
(
σ
(
lJ ;k‖, E, V0J , V

′)) Bi′
(
σ
(
lJ ;k‖, E, V0J , V

′)) ] .(5.52)

5.6. Global Transfer Matrix . The global transfer operator for the device is
the composition of local transfer operators according to the sequence of interfaces from
the injecting to the transmitting contact and relates the amplitudes of the incident
and reflected components at the transmitting contact to those at the incident contact.
In component-major basis order, the global T-matrix is,

[
a(TRA)
J+1

b(TRA)
J+1

]
def= T(TRA|INJ)

J+1,0

[
a(INJ)

0
b(INJ)

0

]
,(5.53)

T(TRA|INJ)
J+1,0 ≡ T(J+1, J)T(J, J−1) . . .T(2,1)T(1,0).(5.54)

Each type of local transfer operator that can occur in the chain is expressible as
the direct sum of its restrictions to a specific set of irreducible invariant subspaces.
Because spacer and contact regions can be tiled into repeating unit-cell areas, their
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Figure 6.1. Flowchart depicting the current calculation process

Figure 6.2. Schematic depiction of multiple sequential scattering of an incident mode from
different interfaces in the device. Each mode incident on an interface gives rise to a reflected
component and a transmitted component. These are again incident on other interfaces. Scattering
occurs ad-infinitum.

irreducible Fk‖ -subspaces give rise to their F[g‖] subspaces through an external direct-
sum. Therefore, the various F[g‖] are the smallest invariant subspaces common to all
regions in the device. The following theorem formalizes this notion.

Theorem 5.16. The global T-operator is the direct sum of its restrictions to all
BZV-subspaces.

Proof. From corollary 5.7, corollary 5.9, and corollary 5.11 we note that the
various BZV-subspaces, F[g‖] ⊗ C2 (

g‖ ∈ f‖
)
, form (irreducible) invariant sub-

spaces for the local T-operators corresponding to interfaces where at least one re-
gion is a QDL slice. From corollary 5.13 and corollary 5.15 we note that the various
Fk‖ ⊗ C2 (

k‖ ∈ K
)
form irreducible invariant-subspaces for the local T-operators

corresponding to interfaces where both regions are homogeneous (spacers or contacts).
From the group-theoretic facts in Appendix A, F[g‖] ⊗ C2 =

⊕
(l,m)∈Z2 Fg‖lm ⊗ C2.

Therefore all BZV-subspaces are exhaustive, invariant-subspaces for all types of lo-
cal T-operators. They are therefore exhaustive, invariant-subspaces for the global
T-operator also, which just the composition of a sequence of local T-operators. QED.

It therefore suffices to work with the expression for the restriction of the global
T-operator to an arbitrary BZV-subspace,

[ a(TRA)

J+1[g‖]
b(TRA)

J+1[g‖]

]
def= T(TRA|INJ)

J+1,0[g‖]

[ a(INJ)

0[g‖]
b(INJ)

0[g‖]

]
,(5.55)

T(TRA|INJ)

J+1,0[g‖] = TJ+1, J[g‖]TJ, J−1[g‖] . . .T1,0[g‖].(5.56)
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Figure 6.3. Schematic depiction of the composition of the local T-matrices to form the global T-
matrix. Numeric labels indicate specific local T-matrices: (1) T(SPC|INJ)

(1,0) (2) T(QDL|INJ)
(1,0) (3) T(SPC|SPC)

(j+1, j)
(4) T(SPC|QDL)

(j+1, j) (5) T(QDL|SPC)
(j+1, j) (6) T(QDL|QDL)

(j+1, j) (7) T(TRA|QDL)
(J+1, J) (8) T(TRA|SPC)

(J+1, J) .

6. Current calculation . Figure 6.1 depicts the current calculation process as
described earlier in the general formalism (Section 3). The global T-matrix captures
the ad-infinitum multiple sequential scattering of the incident, reflected and trans-
mitted waves at all interfaces (schematically depicted in figure 6.2) brought about by
the the incident phase at the injecting contact. Figure 6.3 shows the types of local
T-matrices whose composition forms the global T-matrix. From the structure of the
local T-operators, we observe that at any interface, an incident component with lateral
behavior

∣∣g‖ + G‖lm
〉
, for some (l,m) ∈ Z2, is scattered into reflected and transmit-

ted components within the same BZV-subspace, F[g‖]. These modes, in turn, are
forward- and back-scattered within the same BZV-subspace at every subsequent scat-
tering event. This property of lateral-mode scattering within the same BZV-subspace
holds for all T-operators regardless of their number and position-of-evaluation. In
limit, this property holds continuously throughout the growth-direction - because the
entire device shares the same lateral Brillouin zone by design, each incident phase is
diffracted into a combination of planewaves with regularly-spaced wavevectors.

Corollary 6.1. An incident mode with lateral behavior
∣∣g‖ + G‖lm

〉
, g‖ ∈ f‖,

(l,m) ∈ Z2 couples only with the following types of modes:
1. all modes that laterally behave as

∣∣g‖ + G‖ij
〉
, (i, j) ∈ Z2, in the incident con-

tact (reflected wavefunction), spacer regions and transmitting contact (trans-
mitted wavefunction), and

2. modes with lateral behavior
∣∣ng‖〉, all n ∈ N, in QDL slices.

Because the lateral behavior of every incident mode is expressible as the sum of some
Brillouin zone vector and some reciprocal-lattice vector, this Brillouin zone vector
dictates the BZV-subspace inside which all calculations can be completely performed.
Due to this, the continuous distribution of the reflected and transmitted wavefunctions
over iso-energy wavevectors in Eqn. (3.9) and Eqn. (3.10) for an arbitrary incident
k(INC) = g‖lm + kz ẑ, E = E(INJ) (k(INC)) must be recast as discrete sums,

Ψ(REFL)
(
r;g‖lm + kz ẑ

)
≡

∑
(l′,m′)∈Z2

ρ[g‖]lm,l′m′ (kz)×(6.1)

exp
[
i
(
g‖l′m′ − k(INJ)

z

(
E,g‖l′m′‖

)
ẑ
)
• r
]
,

ρ[g‖]lm,l′m′ (kz)
def= ρ

(
g‖lm + kz ẑ, g‖l′m′ − k(INJ)

z

(
E,g‖l′m′

)
ẑ
)
,(6.2)

Ψ(TRA)
(
r;g‖lm + kz ẑ

)
≡

∑
(l′,m′)∈Z2

τ[g‖]lm,l′m′ (kz)×(6.3)
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exp
[
i
(
g‖l′m′ + k(TRA)

z

(
E,g‖l′m′‖

)
ẑ
)
• r
]
,

τ[g‖]lm,l′m′ (kz)
def= τ

(
g‖lm + kz ẑ, g‖l′m′ + k(TRA)

z

(
E,g‖l′m′

)
ẑ
)
,(6.4)

The expression for the average transmitted-probability-flux in Eqn. (3.5) now
becomes,

〈
j
(
r‖;g‖lm + k(INC)

z ẑ, Vbias
)〉

=
∑

(l′,m′)∈Z2

∣∣∣τ[g‖]lm,l′m′ (kz)∣∣∣2 ×(6.5)

Re
{
k(TRA)
z

(
E,g‖l′m′

)}
.

Though the summation is conceptually performed over a countably-infinite set of
indices, in practice the real part of the transmitted wavevector in the above expression
will be non-zero only for a finite number propagating modes in the transmitting
contact - other modes will be either evanescent (kz ∈ iR+) or unphysical (kz ∈ iR−).
Evanescent modes do not contribute to probability-current and unphysical modes
must not be considered as part of the general solution for the wavefunction.

7. Conclusions and future work. We have derived the diffraction pattern
for charge-carrier wavefunctions through layers of quantum dots stacked between two
ohmic contacts under different conditions of externally-applied voltage. All quantum
dots within a QDL are identical and show perfect lateral Bravais lattice arrangement
within the layer. All layers are perfectly aligned so that the entire device as a well-
defined lateral unit cell. A wealth of recent experimental work supports and motivates
this study.

We have employed a single-band, effective-mass Schrödinger equation description
of the wavefunction physics. The lateral symmetry justifies the use of the Bloch form
for the lateral wavefunction components which naturally includes long-range, in-plane
correlations between quantum dots. Out-of-plane correlations are achieved through
composition of T-operators which arise at interfaces resulting from discretization along
the growth direction.

We have proved that incident charge-carrier wavefunction phases are diffracted
into specific patterns of propagating out-going phases and that throughout the growth
direction, the distribution over lateral mode wavevectors is closed within the specific
coset of the reciprocal-lattice-vector point group corresponding to the incident mode.
This is true as long as the effective-mass and band profiles remain laterally peri-
odic and we expect this to hold in a variety of model-realizations that may or may
not include strain and self-consistency since mathematical descriptions of physically-
plausible phenomena must maintain laterally periodicity.

A significant mathematical consequence of this diffraction pattern is that all cal-
culations can be performed independently within a special lateral function-subspace
established by the incident-wave. Computationally, this leads to greatly-increased
parallelism through independence of calculations in different subspaces, and vastly-
reduced memory pressure due to decreased dimensionality of each subspace.

Though our derivations employ the T-matrix approach for conceptual develop-
ment, the model must numerically implemented with care. Preliminary implemen-
tations highlight intrinsic numerical challenges - in principle, any incident phase is
scattered into a full set of propagating and evanescent components in the reflected
and transmitted states. Therefore, basis modes and functions must be chosen to be
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numerically satisfactory in addition to being physically justifiable. Limiting basis-
set size to allow selected modes requires caution since the T-matrix approach, and
the related S-matrix approach, require the same basis-cardinality in the domain and
range (i.e., successive regions) so as to permit the inversion of a (square) sub-matrix
at the final stage of computing the transmission amplitudes. While large basis-size
facilitates better approximation of the conceptual representation in infinite bases, it
also introduces (a large number of) exponentially decaying and growing modes into
the solution thereby causing or increasing instability. In addition, pedagogical ideal-
izations to device-geometry, like a generalized Kronig-Penney model with rectangular
effective-mass and PEF profiles, lead to divergent infinite sums in the convolution
expressions for certain matrix elements indicating their unphysicality. Hence, the
demonstration of simulation is also contingent on finding good, physically-plausible
candidate functions for the potential energy and effective-mass.

Apart from these numeric challenges, the proposed model is also limited by its
neglect of effects from other phenomena like spin-orbit coupling, inter-carrier correla-
tion, interactions with other excitations like phonons, and relativistic corrections, if
any.

Our current work is directed towards systematically deriving and implementing
a physically- and mathematically-justified, robust numerical procedure for simulation
as well as identifying good, illustrative models for device-geometries. Future work
includes study of computational characteristics, the development of efficient and ac-
curate numerics and deployments, simulation of realistic geometries, and characteri-
zation of charge-transport for various choices of structural design parameters for the
device.

The general development of the model is applicable to devices with other forms
of lateral symmetry provided suitable, parametric forms of the lateral eigenfunctions
exists to capture the symmetry. Despite existing limitations, the development of
the proposed model has helped identify advantageous traits like the lateral function-
subspace-closure property discussed above which will form the foundation for any
successful implementation.

Appendix A. General and frequently-used facts .
The following group-theoretic facts are used in proving several results,
The set of wavevectors K =

{
k‖|k‖ ∈ R2} forms an abelian group under vector

addition. Every subgroups of an abelian group is normal.
The set G =

{
G‖lm | (l,m) ∈ Z2} forms a point-group that is invariant with

respect to translations by reciprocal lattice vectors. It is a subgroup of K.
For each g‖ ∈ f‖, the set G[g‖] =

{
g‖lm | (l,m) ∈ Z2} forms a coset of G within

K and is an equivalence class of g‖ under the relation k‖1 Rk‖2 iff
(
k‖1 − k‖2

)
∈

G, k‖1,k‖2 ∈ K. The set of all these cosets forms the quotient-group K/G ={
G[g‖] |g‖ ∈ f‖

}
.

F =
⊕

g‖∈f‖ F[g‖] F =
⊕

k‖∈K Fk‖ F[g‖] =
⊕

(l,m)∈Z2 F‖g‖lm
Lemma A.1. The 2D Fourier transform of a laterally periodic function, a

(
r‖
)
≡

a
(
r‖ + R‖lm

)
, (l,m) ∈ Z2, to the reciprocal-space variable k‖ is zero unless k‖ is a

reciprocal-lattice vector, i.e., ∃ (i, j) ∈ Z2 k‖ = G‖ij.
Proof. a

(
r‖
)
has 2D Fourier series representation given by Eqn. (2.3), with
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coefficients âlm, (l,m) ∈ Z2. Its 2D Fourier transform to k‖ becomes,

F‖
[
a
(
r‖
)] (

k‖
)
≡

∑
(l,m)∈Z2

âlm × 2πδ
(
k‖ −G‖lm

)
.(A.1)

The Dirac-comb in the final expression completes the proof.
Corollary A.2. Given a set of laterally periodic functions

{
ai
(
r‖
)

: i = 1, 2, . . .
}
,

i.e. ∀ (l,m) ∈ Z2 : ai
(
r‖
)
≡ ai

(
r‖ + R‖lm

)
, the Fourier transform of their product

to the variable k‖ is zero unless k‖ is a reciprocal-lattice vector.
Proof. Follows from lemma A.1 because the product b

(
r‖
)

=
∏
i ai
(
r‖
)
is itself

periodic.
Theorem A.3. The Fourier transform of the periodic function a

(
r‖
)
≡ a

(
r‖ + R‖lm

)
,

∀ (l,m) ∈ Z2 to the reciprocal-space vector
(
g‖1 − g‖2

)
, for any g‖1,g‖2 ∈ f‖, is zero

unless g‖1 = g‖2.
Proof. From lemma A.1, the Fourier transform is zero unless

(
g‖1 − g‖2

)
= G‖ij

for some (i, j) ∈ Z2. But because g‖1 and g‖2 lie within the first Brillouin zone,(
g‖1 − g‖2

)
can only equal the G‖00 = 0 reciprocal lattice vector. QED.

Corollary A.4. Given periodic functions
{
ai
(
r‖
)

: i = 1, 2, . . .
}

sharing the
same period, the Fourier transform of the product b

(
r‖
)

=
∏
i ai
(
r‖
)
to the reciprocal-

space vector
(
g‖1 − g‖2

)
, for any g‖1,g‖2 ∈ f‖, is zero unless g‖1 = g‖2.

Appendix B. Representation and properties of QDL lateral eigenfunc-
tions .

At any fixed value of z = z0, the lateral Hamiltonian is invariant with respect to
translations by arbitrary real-space lattice vectors. Therefore, the Bloch theorem [1]
imposes the following structure on the real-space representation of its eigenfunctions,

〈
r‖ | ng‖ (z0)

〉 def= φng‖
(
r‖; z0

)
≡ 1

2π
ung‖

(
r‖; z0

)
eig‖•r‖ ,(B.1)

where the constant factor of 1/2π has been introduced to ensure orthonormality of
lateral basis functions, and ung‖

(
r‖; z0

)
is the central-cell function which is periodic

with the lateral lattice and hence has a Fourier-series representation with coefficients
ûng‖,lm (z0), (l,m) ∈ Z2. Therefore,

φng‖
(
r‖; z0

)
≡ 1

2π
∑

(l,m)∈Z2

ûng‖,lm (z0) eig‖lm•r‖ ,(B.2)

which makes the vector of coefficients ûng‖ (z0) the representation of
∣∣ng‖ (z0)

〉
in

reciprocal space. Being a linear combination exclusively of
∣∣g‖lm〉, (l,m) ∈ Z2,∣∣ng‖ (z0)

〉
is a vector in F[g‖] .

Because the lateral Hamiltonian is hermitian , these eigenfunctions are orthogonal,
and normal without loss of generality,

〈
n1g‖1 (z0) | n2g‖2 (z0)

〉
≡
¨

R2
φ∗n1g‖1

(
r‖; z0

)
φn2g‖2

(
r‖; z0

)
d2r‖(B.3)

= δn1n2δ
(
g‖1 − g‖2

)
,

⇒ û∗n1g‖1
(z0) • ûn2g‖2 (z0)

def=
∑

(l,m)∈Z2

û∗n1g‖1,lm
(z0) ûn2g‖2,lm (z0)(B.4)
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=
{
δn1n2 , g‖1 = g‖2 ,

0, g‖1 6= g‖2 .

For physically-plausible Hamiltonians, the lateral eigenfunctions form a complete
set,

¨
f‖

∑
n∈N

∣∣ng‖ (z0)
〉 〈
ng‖ (z0)

∣∣ d2g‖ = I.(B.5)

Proposition B.1. Given z = z0, ∀g‖ ∈ f‖, the subset Φ[g‖] =
{∣∣ng‖ (z0)

〉
|n ∈ N

}
of the lateral eigenbasis generates the BZV-subspace corresponding to g‖, i.e.,

span
{∣∣ng‖ (z0)

〉
|n ∈ N

}
= F[g‖].

Proof. Follows from the fact that the lateral eigenfunctions are mutually orthonor-
mal and form a complete set and therefore, the subset that lies within any subspace
must generate that subspace. Hence Φ[g‖] (z0) must form a complete, orthonormal
basis for F[g‖].

Since the set of reciprocal-space basis states G[g‖] =
{∣∣g‖lm〉 | (l,m) ∈ Z2} also

forms a complete, orthonormal basis for this BZV-subspace, both basis-subsets are
equivalent, i.e., there exists a unitary transformation that maps a representation of
any vector in one system to its representation in the other. Eqn. (B.2) and Eqn. (B.4)
indicate that the various ûng‖,lm provide the matrix elements for these transformations

Appendix C. Matrix Elements for local mode-coupling operators in
vector-ODE form of TISE .

C.1. KE Operator of BenDaniel-Duke. Substituting Eqn. (4.16) into Eqn.
(4.22), multiplying through by 2m0/~2 and rearranging, we get,

∂

∂z


M−1 (z) ∂

∂z

∑
n′ ∈ N

g′‖ ∈ f‖

cn′g′‖ (z)
∣∣∣n′g′‖(z)〉


(C.1)

+2m0

~2

∑
n′ ∈ N

g′‖ ∈ f‖

(
E − Vbias (z)− εn′g′‖ (z)

)
cn′g′‖ (z)

∣∣∣n′g′‖(z)〉= 0.

Applying the chain-rule for derivatives and multiplying through by M (z) we isolate
the second-derivative of cn′g′‖ (z). Projecting both sides onto an arbitrary

∣∣ng‖ (z)
〉
, n ∈

N, g‖ ∈ f‖, exploiting orthonormality (Eqn. (B.3)) to simplify, and defining,

M[i,j] (z) def=
[
∂i

∂zi
M (z)

] [
∂j

∂zj
M−1 (z)

]
(C.2)
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we get,
d2

dz2 cng‖ (z) +
∑

n′ ∈ N
g′‖ ∈ f‖

P
(BD)
ng‖,n′g′‖

(z) d

dz
cn′g′‖ (z)(C.3)

+
∑

n′ ∈ N
g′‖ ∈ f‖

[
Q

(BD)
ng‖,n′g′‖

(z) +Mng‖,n′g′‖ (z)K2
z,n′g′‖

]
cn′g′‖ (z) = 0,

where

P
(BD)
ng‖,n′g′‖

(z) =
〈
ng‖ (z)

∣∣M[0,1] (z) + 2 ∂
∂z

∣∣∣n′g′‖ (z)
〉

≡
¨

R2
φ∗ng‖

(
r‖; z

) [
m
(
r‖, z

)( ∂

∂z

1
m
(
r‖, z

))]φn′g′‖ (r‖; z) d2r‖

+ 2
¨

R2
φ∗ng‖

(
r‖; z

) ∂

∂z
φn′g′‖

(
r‖; z

)
d2r‖,(C.4)

Q
(BD)
ng‖,n′g′‖

(z) =
〈
ng‖ (z)

∣∣M[0,1] (z) ∂

∂z
+ ∂2

∂z2

∣∣∣n′g′‖ (z)
〉

≡
¨

R2
φ∗ng‖

(
r‖; z

) [
m
(
r‖, z

)( ∂

∂z

1
m
(
r‖, z

))] ∂

∂z
φn′g′‖

(
r‖; z

)
d2r‖

+
¨

R2
φ∗ng‖

(
r‖; z

) ∂2

∂z2φn′g′‖
(
r‖; z

)
d2r‖,(C.5)

Mng‖,n′g′‖ (z) =
〈
ng‖ (z)

∣∣M (z)
∣∣∣n′g′‖ (z)

〉
≡
¨

R2
φ∗ng‖

(
r‖; z

)
m
(
r‖; z

)
φn′g′‖

(
r‖; z

)
d2r‖,(C.6)

K2
z,ng‖ (z) = 2m0

~2

(
E − Vbias (z)− εng‖ (z)

)
.(C.7)

Eqn. (C.3) can be expressed in matrix-vector form as Eqn. (4.23) where the
matrix K2

z (z) is taken to be diagonal with elements calculated according to Eqn.
(C.7).

C.2. KE Operator of G. Bastard. Beginning with the substitution of Eqn.
(4.18) into Eqn. (4.22), and following the procedure in Sec. C.1, we arrive at Eqn.
(C.3) but with P (BD)

ng‖,n′g′‖
(z) 7→ P

(GB)
ng‖,n′g′‖

(z) and Q(BD)
ng‖,n′g′‖

(z) 7→ Q
(GB)
ng‖,n′g′‖

(z), and,

P
(GB)
ng‖,n′g′‖

(z) ≡ P (BD)
ng‖,n′g′‖

(z)(C.8)

Q
(GB)
ng‖,n′g′‖

(z) = Q
(BD)
ng‖,n′g′‖

(z) + ∆Q(GB)
ng‖,n′g′‖

(z) ,(C.9)

∆Q(GB)
ng‖,n′g′‖

(z) def=
〈
ng‖

∣∣M[0,2]
∣∣∣n′g′‖〉

≡ 1
2

¨
R2
φ∗ng‖

(
r‖; z

) [
m
(
r‖, z

)( ∂2

∂z2
1

m
(
r‖, z

))]φn′g′‖ (r‖; z) d2r‖.(C.10)
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Appendix D. Block-diagonal form of QDL local mode-coupling matri-
ces.

The matrices for all coupling operators in Eqn. (4.23) exhibit definite structure -
coupling occurs only between input and output modes that share the same g‖-index.
We begin with a general result and exploit this to show that this coupling property
holds for special cases.

Lemma D.1. Given a fixed z = z0, a function f
(
r‖
)
that is periodic with the

lateral lattice, and Brillouin zone vectors g‖ and g′‖, the following matrix-element,

Fng‖,n′g′‖ (z0) =
〈
ng‖ (z0)

∣∣ f ∣∣∣n′g′‖ (z0)
〉

(D.1)

=
¨

R2
φ∗ng‖

(
r‖; z0

)
f
(
r‖
)
φn′g′‖

(
r‖; z0

)
d2r‖,

is zero unless g‖ = g′‖, for all n, n′ ∈ N.
Proof. Substituting the Bloch form of the two lateral eigenfunctions from Eqn.

(B.1), the integral becomes,

Fng‖,n′g′‖ (z0) = 1
(2π)2

¨
R2
e−i(g‖−g′‖)•r‖g

(
r‖; z0

)
d2r‖,(D.2)

g
(
r‖; z0

) def= u∗ng‖

(
r‖; z0

)
f
(
r‖
)
un′g′‖

(
r‖; z0

)
.(D.3)

The expression for the integral has become the Fourier transform of g
(
r‖; z0

)
to the

difference between the Brillouin zone vectors. Because g
(
r‖; z0

)
is periodic with the

lateral lattice, we may invoke corollary A.4 to complete the proof.
Proposition D.2. The various BZV-subspaces form irreducible invariant-subspaces

for the local mode-coupling operators - P(BD) (z), Q(BD) (z), P(GB) (z), Q(GB) (z), and
M (z) in Eqn. (4.23) - within a QDL.

Proof. Because the z-derivatives of laterally periodic functions are also laterally
periodic, the expressions for the matrix elements of the operators (Eqn. (C.4), Eqn.
(C.5), Eqn. (C.8), Eqn. (C.9), Eqn. (C.6) respectively) satisfy the preconditions for
invoking the above lemma. From proposition B.1, the lateral eigenbasis is complete
and orthonormal. Therefore, each of the above operators maps each basis element to
other basis elements within the same BZV-subspace as evidenced by the sparsity in the
matrix elements due to the above lemma. Hence the BZV-subspaces are invariant-
subspaces for these operators. The matrices for restrictions of these operators to
various BZV subspaces are dense for general effective-mass profiles. Hence these
subspaces are irreducible.

The completeness of the lateral eigenbasis leads to the following observation.
Corollary D.3. The intra-slice coupling matrices are the direct sum of their

restrictions to all BZV-subspaces, i.e., O =
⊕

g‖∈f‖O[g‖], where O represents oper-
ators P(BD) (z), Q(BD) (z), P(GB) (z), Q(GB) (z), and M (z).

Corollary D.4. The matrices for operators P(BD) (z), Q(BD) (z), P(GB) (z),
Q(GB) (z), and M (z) are block-diagonal in a natural order of the lateral eigenbasis
(Def. 4.1). For P (z), we get the following expression,
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P (z) =



. . .
· · · 0 P[g‖] (z) 0 · · ·

. . .
· · · 0 P[g′‖] (z) 0 · · ·

. . .


,(D.4)

where the matrix elements for the operator-restrictions are,

P[g‖]nn′ (z) =
〈
ng‖

∣∣M[0,1] + 2 ∂
∂z

∣∣n′g‖〉 .(D.5)

Analogous expressions hold for Q (z), Υ(i,j) (z), M (z). The matrix for K2
z (z) is

diagonal by definition and remains so for any order of basis elements. Hence the
whole of Eqn. (4.23) is block-diagonal in a natural order of the basis.

Appendix E. Concise Expressions for Intra-Slice Mode-Coupling Ma-
trix Elements .

Being laterally periodic, the relative-effective-mass lateral profile m
(
r‖; z

)
and its

reciprocal µ
(
r‖; z

)
are representable as vectors m̂ (z) and µ̂ (z) of their Fourier-series

coefficients as per Section 2.3. Combined with the block-diagonal nature of the intra-
slice mode-coupling operators, along with the representation of lateral eigenfunctions
in Appendix B, this leads to concise expressions for various matrix elements,

M[g‖]n1n2
(z) = û∗n1g‖ (z) •

(
m̂ (z)� ûn2g‖ (z)

)
,(E.1)

P[g‖]n1,n2
(z) = û∗n1g‖ (z) •

(
m̂ (z)� d

dz
µ̂ (z)� ûn2g‖ (z)

)
(E.2)

+ 2Υ[0,1]
[g‖]n1,n2

(z) ,

Q
(BD)
[g‖]n1,n2

(z) = û∗n1g‖ (z) •
(
m̂ (z)� d

dz
µ̂ (z)� ∂

∂z
ûn2g‖ (z)

)
(E.3)

+ Υ[0,2]
[g‖]n1,n2

(z) ,

∆Q(GB)
[g‖]n1,n2

(z) = û∗n1g‖ (z) •
(
m̂ (z)� d2

dz2 µ̂ (z)� ûn2g‖ (z)
)

(E.4)

where

Υ[i, j]
[g‖]n1,n2

(z) = di

dzi
û∗n1g‖ (z) • dj

dzj
ûn2g‖ (z) .(E.5)

The derivatives of ûng‖ (z) can be calculated numerically by solving the lateral
eigenvalue problem of Eqn. (4.19) on a mesh imposed along z, or analytically if
appropriate parametric formulae for m

(
r‖; z

)
and Vstruct

(
r‖; z

)
are used.

The simplified BZV-subspace expression for G0 (z) in Eqn. (4.31), for both KE
operators. From Eqn. (C.4) and Eqn. (C.8), is

G
(BD)
0 [g‖]n1,n2

= 1
2
û∗n1g‖ •

(
m̂ (z)� d

dz
µ̂ (z)� d

dz
ûn2g‖ (z)

)
(E.6)

32



− 1
2
d

dz
û∗n1g‖ •

(
m̂ (z)� d

dz
µ̂ (z)� ûn2g‖ (z)

)
− 1

2
û∗n1g‖ •

[(
d

dz
m̂ (z)� d

dz
µ̂ (z)

)
� ûn2g‖ (z)

]
− Υ[1,1]

[g‖]n1,n2
(z)− 1

4
{
P2 (z)

}
[g‖]n1,n2

,

G
(GB)
0 [g‖]n1,n2

= G
(BD)
0 [g‖]n1,n2

(E.7)

− 1
2
û∗n1g‖ •

(
m̂ (z)� d2

dz2 µ̂ (z)� ûn2g‖ (z)
)
.

Appendix F. Block-diagonal nature of inter-region mode-coupling ma-
trices .

F.1. Inter-slice coupling in QDL . Substituting the expressions for the wave-
functions from Eqn. (4.37) into Eqn. (5.3) and (5.4) and projecting onto a mode∣∣n1g‖1

〉
j+1, Eqn. (5.5) yields, in component-major basis-order,

{Θj+1 [aj+1 + bj+1]}n1g‖1
δ
(
0‖
)

=(F.1) ∑
n2g‖2

x
(QDL|QDL)
1(j+1, j)n1g‖1,n2g‖2

{Θj [exp (iΞj lj)aj + exp (−iΞj lj)bj ]}n2g‖2
,

{Θj+1Ξj+1 [aj+1 − bj+1]}n1g‖1
δ
(
0‖
)

=(F.2) ∑
n2g‖2

x
(QDL|QDL)
2(j+1, j)n1g‖1,n2g‖2

{ΘjΞj [exp (iΞj lj)aj − exp (−iΞj lj)bj ]}n2g‖2
.

where the expressions for the exchange coefficients are,

x
(QDL|QDL)
1(j+1, j)n1g‖1,n2g‖2

=
〈(
n1g‖1

)
j+1 |

(
n2g‖2

)
j

〉
,(F.3)

x
(QDL|QDL)
2(j+1, j)n1g‖1,n2g‖2

=
〈(
n1g‖1

)
j+1

∣∣∣m(QDL|QDL)
(j+1, j)

∣∣∣ (n2g‖2
)
j

〉
,(F.4)

m
(QDL|QDL)
(j+1, j)

(
r‖
)

=
m(QDL)
j+1

(
r‖
)

m(QDL)
j

(
r‖
) .(F.5)

Using the Bloch representation of the eigenfunctions,

x
(QDL|QDL)
1(j+1, j)n1g‖1,n2g‖2

=(F.6)
1

(2π)2
¨

R2
e−i(g‖1−g‖2)•r‖

{
u∗j+1, n1g‖1

(
r‖
)
uj, n2g‖2

(
r‖
)}

d2r‖,

x
(QDL|QDL)
2(j+1, j)n1g‖1,n2g‖2

=(F.7)
1

(2π)2
¨

R2
e−i(g‖1−g‖2)•r‖χ(QDL|QDL)

2(j+1, j)n1g‖1,n2g‖2

(
r‖
)
d2r‖,

χ
(QDL|QDL)
2(j+1, j)n1g‖1,n2g‖2

(
r‖
) def=(F.8)

u∗j+1, n1g‖1

(
r‖
)
m

(QDL|QDL)
(j+1, j)

(
r‖
)
uj, n2g‖2

(
r‖
)
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These expressions are Fourier transforms of periodic functions. Corollary A.4
proves that these expressions are identically zero unless g‖1 = g‖2. Therefore, scat-
tering into mode

∣∣n1g‖
〉
j+1 takes place only from modes

∣∣n2g‖
〉
j
, n2 ∈ N. Since

n1 ∈ N is arbitrary, all modes
∣∣n2g‖

〉
j
scatter into all modes

∣∣n1g‖
〉
j+1 for a given

g‖ ∈ f‖.
When considering back-scattering, we find that all modes

∣∣n1g‖
〉
j+1 scatter into

all modes
∣∣n2g‖

〉
j+1 , n1, n2 ∈ N, for any given g‖ ∈ f‖ - the procedure is similar

to the above and begins by projecting Eqn. (5.3) and (5.4) onto an arbitrary mode∣∣n2g‖2
〉
j
.

Because g‖ ∈ f‖ is arbitrary, we conclude that for each Brillouin-zone vector g‖,
scattering occurs only between modes

∣∣n2g‖
〉
j
and

∣∣n1g‖
〉
j+1, for all n1, n2 ∈ N . This

proves theorem 5.6.
Because of this specific pattern of scattering, the exchange coefficients can be

organized into block-diagonal-matrix form in a natural ordering of each eigenbasis in
both slices. Observing that all other matrices are also block-diagonal, Eqn. (F.1)
and Eqn. (F.2) are concisely expressed in terms of restrictions to an arbitrary BZV-
subspace. Considering only non-zero terms in Eqn. (F.1) and Eqn. (F.2), and
rearranging to T-matrix form, we get Eqn. (5.11) and Eqn. (5.12).

Concise expressions for the non-zero matrix elements are given in Eqn. (5.13)
and Eqn. (5.14).

F.2. Spacer-QDL coupling . For a spacer with region-index j and QDL and
region-index j′ = j± 1, we substitute Eqn. (4.8) and Eqn. (4.37) into Eqn. (5.3) and
Eqn. (5.4) and get,

∑
n∈N

¨
f‖

{
Θj′

[
exp (iΞj′zj′)a(QDL)

j′

+ exp (−iΞj′zj′)b(QDL)
j′

]}
ng‖

φj′,ng‖
(
r‖
)
d2g‖ =(F.9)

1
2π

¨
K

[
a(SPC)
j

(
k‖
)
Ai
(
σ
(
zj ;k‖, E, V0j , V

′))
+b(SPC)

j

(
k‖
)
Bi
(
σ
(
zj ;k‖, E, V0j , V

′)) ] eik‖•r‖ d2k‖,

∑
n∈N

¨
f‖

{
iΘj′Ξj′

[
exp (iΞj′zj′)a(QDL)

j′

− exp (iΞj′zj′)b(QDL)
j′

]}
ng‖

φj′,ng‖
(
r‖
)
d2g‖ =(F.10)

1
2π

¨
K

[
a(SPC)
j

(
k‖
)
Ai′
(
σ
(
zj ;k‖, E, V0j , V

′))
+b(SPC)

j

(
k‖
)
Bi′
(
σ
(
zj ;k‖, E, V0j , V

′)) ] eik‖•r‖ d2k‖.

It is understood that zj and zj′ are the local z-coordinates for the interface in the
respective regions and take the following values depending on the case,

QDL succeeds spacer⇒ j′ = j + 1, zj = lj , zj′ = 0,
QDL precedes spacer⇒ j′ = j − 1, zj = 0, zj′ = lj′ .(F.11)

We now prove theorem 5.8.
Projecting both sides of Eqn. (F.9) and Eqn. (F.10) onto an arbitrary

∣∣ng‖〉j′
and rearranging,

∑
n′∈N

¨
f‖

{
Θj′

[
exp (iΞj′zj′)a(QDL)

j′

+ exp (−iΞj′zj′)b(QDL)
j′

]}
n′g′‖

δnn′δ
(
g‖ − g′‖

)
d2g′‖ =
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¨
K‖(E)

x
(QDL|SPC)
1(j′, j)ng‖,k‖

[
a(SPC)
j

(
k‖
)
Ai
(
σ
(
zj ;k‖, E, V0j , V

′))
+b(SPC)

j

(
k‖
)
Bi
(
σ
(
zj ;k‖, E, V0j , V

′)) ] d2k‖.(F.12)

∑
n′∈N

¨
f‖

{
iΘj′Ξj′

[
exp (iΞj′zj′)a(QDL)

j′

− exp (iΞj′zj′)b(QDL)
j′

]}
n′g′‖

δnn′δ
(
g‖ − g′‖

)
d2g′‖ =

¨
K‖(E)

x
(QDL|SPC)
2(j′, j)ng‖,k‖

[
a(SPC)
j

(
k‖
)
Ai′
(
σ
(
zj ;k‖, E, V0j , V

′))
+b(SPC)

j

(
k‖
)
Bi′
(
σ
(
zj ;k‖, E, V0j , V

′)) ] d2k‖,(F.13)

where the expressions for the exchange coefficients are,

x(QDL|SPC)
1(j′, j)ng‖,k‖

=
〈(
ng‖

)
j′
|
(
k‖
)
j

〉
,(F.14)

x(QDL|SPC)
2(j′, j)ng‖,k‖

=
〈(
ng‖

)
j′

∣∣∣m(QDL|SPC)
(j′, j)

∣∣∣(k‖)j〉 ,(F.15)

m(QDL|SPC)
(j′, j)

(
r‖
)

=
m(QDL)
j′

(
r‖
)

m(SPC)
j

,(F.16)

and m
(QDL|SPC)
(j′, j)

(
r‖
)
is the ratio-of-effective-mass function for the interface and is

periodic. Now, any k‖ can be expressed as the sum of a wavevector within the Brillouin
zone and a reciprocal lattice displacement, i.e., ∀k‖ ∈ K, ∃q‖ ∈ f‖, (l,m) ∈ Z2 :
k‖ = q‖lm

def= q‖+G‖lm. Then, employing the real-space representations of the states
in the above equations (Bloch form for the lateral eigenfunctions from Eqn. (B.1)),

x
(QDL|SPC)
1(j′, j)ng‖,k‖

7→ x
(QDL|SPC)
1(j′, j)ng‖,lmq‖

(F.17)

= F∗‖
[
φj′,ng‖

(
r‖
)] (

q‖lm
)

= δ
(
g‖ − q‖

)
û∗j′,ng‖,lm,

x
(QDL|SPC)
2(j′, j)ng‖,k‖

7→ x
(QDL|SPC)
2(j′, j)ng‖,lmq‖

(F.18)

= F∗‖

[
m

(QDL|SPC)
(j′, j)

(
r‖
)
φj′,ng‖

(
r‖
)] (

q‖lm
)

= δ
(
g‖ − q‖

) (
m̂(QDL|SPC)

(j′, j) � û∗j′,ng‖

)
lm
,

where m̂(QDL|SPC)
(j′, j) is the vector of Fourier-series coefficients of the ratio-of-effective-

mass function. We have invoked theorem A.3 and corollary A.4 in Appendix A to
arrive at the final expressions. The Dirac-delta functions in the above expressions
prove that only spacer-region modes

∣∣g‖lm〉j scatter into QDL modes
∣∣ng‖〉j′ , all

(l,m) ∈ Z2, n ∈ N, and that there is no coupling between modes whose indices differ
in the Brillouin-zone vector.

A similar procedure beginning with the projection of both sides of Eqn. (F.9)
and Eqn. (F.10) onto an arbitrary

∣∣∣k‖ def= g‖lm
〉
j
leads to analogous expressions for

back-scattering from QDL modes to spacer modes. The Dirac-delta functions in the
expressions for the resulting exchange coefficients, x(QDL|SPC)

1(j,j′)lmq‖,ng‖
and x(QDL|SPC)

2(j,j′)lmq‖,ng‖
,

prove that only QDL-region modes
∣∣ng‖〉j′ scatter into spacer-region modes

∣∣g‖lm〉j
for all (l,m) ∈ Z2, n ∈ N, and that there is no coupling between modes whose indices
differ in the Brillouin-zone vector.
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Therefore, forward- as well as backward-scattering between spacer and QDL
modes occurs only between modes whose indices share the same Brillouin-zone-vector.
This proves theorem 5.8.

The completeness of the set G[g‖] =
{∣∣g‖lm〉j | (l,m) ∈ Z2

}
in the spacer and the

set Φ[g‖] =
{∣∣ng‖〉j+1 | n ∈ N

}
in the QDL slice, as basis for F[g‖], along with the

group-theoretic facts in Appendix A prove corollary 5.9.
Considering only the non-zero terms in Eqn. (F.18) and Eqn. (F.18), applying

the relevant case as per Eqn. (F.11), substituting into Eqn. (F.9) and Eqn. (F.10),
and manipulating them to arrive at the T-matrix form, we get Eqn. (5.20) and Eqn.
(5.26) depending on region-order.
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